MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinsin Structured version   Visualization version   GIF version

Theorem asinsin 24419
Description: The arcsine function composed with sin is equal to the identity. This plus sinasin 24416 allow us to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (π / 2) − i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 − (π / 2). In particular, when restricted to reals this identity extends to the closed interval [-(π / 2), (π / 2)], not just the open interval (see reasinsin 24423). (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
asinsin ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)

Proof of Theorem asinsin
StepHypRef Expression
1 sincl 14695 . . . 4 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
21adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
3 asinval 24409 . . 3 ((sin‘𝐴) ∈ ℂ → (arcsin‘(sin‘𝐴)) = (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))))
42, 3syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))))
5 ax-icn 9874 . . . . . . . 8 i ∈ ℂ
6 mulcl 9899 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
75, 2, 6sylancr 694 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
8 simpl 472 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
9 mulcl 9899 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
105, 8, 9sylancr 694 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
11 efcl 14652 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) ∈ ℂ)
137, 12pncan3d 10274 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) + ((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = (exp‘(i · 𝐴)))
1412, 7subcld 10271 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) ∈ ℂ)
15 ax-1cn 9873 . . . . . . . . 9 1 ∈ ℂ
162sqcld 12868 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘𝐴)↑2) ∈ ℂ)
17 subcl 10159 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (1 − ((sin‘𝐴)↑2)) ∈ ℂ)
1815, 16, 17sylancr 694 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − ((sin‘𝐴)↑2)) ∈ ℂ)
19 binom2sub 12843 . . . . . . . . . 10 (((exp‘(i · 𝐴)) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)))
2012, 7, 19syl2anc 691 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)))
2112sqvald 12867 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴))↑2) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
22 2cn 10968 . . . . . . . . . . . . . 14 2 ∈ ℂ
2322a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℂ)
2423, 12, 7mul12d 10124 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴)))) = ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴)))))
2521, 24oveq12d 6567 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
26 coscl 14696 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2726adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
28 subsq 12834 . . . . . . . . . . . . 13 (((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
2927, 7, 28syl2anc 691 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
30 sqmul 12788 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((i · (sin‘𝐴))↑2) = ((i↑2) · ((sin‘𝐴)↑2)))
315, 2, 30sylancr 694 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴))↑2) = ((i↑2) · ((sin‘𝐴)↑2)))
32 i2 12827 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
3332oveq1i 6559 . . . . . . . . . . . . . . . 16 ((i↑2) · ((sin‘𝐴)↑2)) = (-1 · ((sin‘𝐴)↑2))
3416mulm1d 10361 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · ((sin‘𝐴)↑2)) = -((sin‘𝐴)↑2))
3533, 34syl5eq 2656 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i↑2) · ((sin‘𝐴)↑2)) = -((sin‘𝐴)↑2))
3631, 35eqtrd 2644 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴))↑2) = -((sin‘𝐴)↑2))
3736oveq2d 6565 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴)↑2) − -((sin‘𝐴)↑2)))
3827sqcld 12868 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴)↑2) ∈ ℂ)
3938, 16subnegd 10278 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − -((sin‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
4038, 16addcomd 10117 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
4137, 39, 403eqtrd 2648 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
42 efival 14721 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4342adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4472timesd 11152 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · (sin‘𝐴))) = ((i · (sin‘𝐴)) + (i · (sin‘𝐴))))
4543, 44oveq12d 6567 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴)))) = (((cos‘𝐴) + (i · (sin‘𝐴))) − ((i · (sin‘𝐴)) + (i · (sin‘𝐴)))))
4627, 7, 7pnpcan2d 10309 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) − ((i · (sin‘𝐴)) + (i · (sin‘𝐴)))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
4745, 46eqtrd 2644 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴)))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
4843, 47oveq12d 6567 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴))))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
49 mulcl 9899 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (2 · (i · (sin‘𝐴))) ∈ ℂ)
5022, 7, 49sylancr 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · (sin‘𝐴))) ∈ ℂ)
5112, 12, 50subdid 10365 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴))))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
5248, 51eqtr3d 2646 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
5329, 41, 523eqtr3d 2652 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
54 sincossq 14745 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
5554adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
5625, 53, 553eqtr2d 2650 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) = 1)
5756, 36oveq12d 6567 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)) = (1 + -((sin‘𝐴)↑2)))
58 negsub 10208 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (1 + -((sin‘𝐴)↑2)) = (1 − ((sin‘𝐴)↑2)))
5915, 16, 58sylancr 694 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + -((sin‘𝐴)↑2)) = (1 − ((sin‘𝐴)↑2)))
6020, 57, 593eqtrd 2648 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = (1 − ((sin‘𝐴)↑2)))
61 halfre 11123 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
6261a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 / 2) ∈ ℝ)
63 negicn 10161 . . . . . . . . . . . . . . 15 -i ∈ ℂ
64 mulcl 9899 . . . . . . . . . . . . . . 15 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
6563, 8, 64sylancr 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · 𝐴) ∈ ℂ)
66 efcl 14652 . . . . . . . . . . . . . 14 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
6765, 66syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(-i · 𝐴)) ∈ ℂ)
6812, 67addcld 9938 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
6968recld 13782 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℝ)
70 halfgt0 11125 . . . . . . . . . . . 12 0 < (1 / 2)
7170a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (1 / 2))
7212recld 13782 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(i · 𝐴))) ∈ ℝ)
7367recld 13782 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(-i · 𝐴))) ∈ ℝ)
74 asinsinlem 24418 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴))))
75 negcl 10160 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7675adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -𝐴 ∈ ℂ)
77 reneg 13713 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
7877adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
79 recl 13698 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
80 halfpire 24020 . . . . . . . . . . . . . . . . . . . . 21 (π / 2) ∈ ℝ
8180renegcli 10221 . . . . . . . . . . . . . . . . . . . 20 -(π / 2) ∈ ℝ
82 iooneg 12163 . . . . . . . . . . . . . . . . . . . 20 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8381, 80, 82mp3an12 1406 . . . . . . . . . . . . . . . . . . 19 ((ℜ‘𝐴) ∈ ℝ → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8479, 83syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8584biimpa 500 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))
8680recni 9931 . . . . . . . . . . . . . . . . . . 19 (π / 2) ∈ ℂ
8786negnegi 10230 . . . . . . . . . . . . . . . . . 18 --(π / 2) = (π / 2)
8887oveq2i 6560 . . . . . . . . . . . . . . . . 17 (-(π / 2)(,)--(π / 2)) = (-(π / 2)(,)(π / 2))
8985, 88syl6eleq 2698 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
9078, 89eqeltrd 2688 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘-𝐴) ∈ (-(π / 2)(,)(π / 2)))
91 asinsinlem 24418 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · -𝐴))))
9276, 90, 91syl2anc 691 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · -𝐴))))
93 mulneg12 10347 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
945, 8, 93sylancr 694 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · 𝐴) = (i · -𝐴))
9594fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(-i · 𝐴)) = (exp‘(i · -𝐴)))
9695fveq2d 6107 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(-i · 𝐴))) = (ℜ‘(exp‘(i · -𝐴))))
9792, 96breqtrrd 4611 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(-i · 𝐴))))
9872, 73, 74, 97addgt0d 10481 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((ℜ‘(exp‘(i · 𝐴))) + (ℜ‘(exp‘(-i · 𝐴)))))
9912, 67readdd 13802 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = ((ℜ‘(exp‘(i · 𝐴))) + (ℜ‘(exp‘(-i · 𝐴)))))
10098, 99breqtrrd 4611 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
10162, 69, 71, 100mulgt0d 10071 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
102 cosval 14692 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
103102adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
104 2ne0 10990 . . . . . . . . . . . . . . 15 2 ≠ 0
105104a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ≠ 0)
10668, 23, 105divrec2d 10684 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = ((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
107103, 106eqtrd 2644 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = ((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
108107fveq2d 6107 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(cos‘𝐴)) = (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
109 remul2 13718 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) → (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
11061, 68, 109sylancr 694 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
111108, 110eqtrd 2644 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(cos‘𝐴)) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
112101, 111breqtrrd 4611 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(cos‘𝐴)))
11343oveq1d 6564 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (((cos‘𝐴) + (i · (sin‘𝐴))) − (i · (sin‘𝐴))))
11427, 7pncand 10272 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) − (i · (sin‘𝐴))) = (cos‘𝐴))
115113, 114eqtrd 2644 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (cos‘𝐴))
116115fveq2d 6107 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = (ℜ‘(cos‘𝐴)))
117112, 116breqtrrd 4611 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))))
11814, 18, 60, 117eqsqrt2d 13956 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (√‘(1 − ((sin‘𝐴)↑2))))
119118oveq2d 6565 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) + ((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = ((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))
12013, 119eqtr3d 2646 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))
121120fveq2d 6107 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(i · 𝐴))) = (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2))))))
122 pire 24014 . . . . . . . . . 10 π ∈ ℝ
123122renegcli 10221 . . . . . . . . 9 -π ∈ ℝ
124123a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π ∈ ℝ)
12581a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) ∈ ℝ)
126 elioore 12076 . . . . . . . . 9 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ ℝ)
127126adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
128 pirp 24017 . . . . . . . . . . 11 π ∈ ℝ+
129 rphalflt 11736 . . . . . . . . . . 11 (π ∈ ℝ+ → (π / 2) < π)
130128, 129ax-mp 5 . . . . . . . . . 10 (π / 2) < π
13180, 122ltnegi 10451 . . . . . . . . . 10 ((π / 2) < π ↔ -π < -(π / 2))
132130, 131mpbi 219 . . . . . . . . 9 -π < -(π / 2)
133132a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < -(π / 2))
134 eliooord 12104 . . . . . . . . . 10 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
135134adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
136135simpld 474 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) < (ℜ‘𝐴))
137124, 125, 127, 133, 136lttrd 10077 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℜ‘𝐴))
138 imre 13696 . . . . . . . . 9 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
13910, 138syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
1405, 5mulneg1i 10355 . . . . . . . . . . . 12 (-i · i) = -(i · i)
141 ixi 10535 . . . . . . . . . . . . 13 (i · i) = -1
142141negeqi 10153 . . . . . . . . . . . 12 -(i · i) = --1
14315negnegi 10230 . . . . . . . . . . . 12 --1 = 1
144140, 142, 1433eqtri 2636 . . . . . . . . . . 11 (-i · i) = 1
145144oveq1i 6559 . . . . . . . . . 10 ((-i · i) · 𝐴) = (1 · 𝐴)
14663a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -i ∈ ℂ)
1475a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
148146, 147, 8mulassd 9942 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
149 mulid2 9917 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
150149adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
151145, 148, 1503eqtr3a 2668 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (i · 𝐴)) = 𝐴)
152151fveq2d 6107 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
153139, 152eqtrd 2644 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
154137, 153breqtrrd 4611 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℑ‘(i · 𝐴)))
155122a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℝ)
15680a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (π / 2) ∈ ℝ)
157135simprd 478 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < (π / 2))
158130a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (π / 2) < π)
159127, 156, 155, 157, 158lttrd 10077 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < π)
160127, 155, 159ltled 10064 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ≤ π)
161153, 160eqbrtrd 4605 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) ≤ π)
162 ellogrn 24110 . . . . . 6 ((i · 𝐴) ∈ ran log ↔ ((i · 𝐴) ∈ ℂ ∧ -π < (ℑ‘(i · 𝐴)) ∧ (ℑ‘(i · 𝐴)) ≤ π))
16310, 154, 161, 162syl3anbrc 1239 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ran log)
164 logef 24132 . . . . 5 ((i · 𝐴) ∈ ran log → (log‘(exp‘(i · 𝐴))) = (i · 𝐴))
165163, 164syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(i · 𝐴))) = (i · 𝐴))
166121, 165eqtr3d 2646 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2))))) = (i · 𝐴))
167166oveq2d 6565 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))) = (-i · (i · 𝐴)))
1684, 167, 1513eqtrd 2648 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  +crp 11708  (,)cioo 12046  cexp 12722  cre 13685  cim 13686  csqrt 13821  expce 14631  sincsin 14633  cosccos 14634  πcpi 14636  logclog 24105  arcsincasin 24389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-asin 24392
This theorem is referenced by:  acoscos  24420  reasinsin  24423  asinsinb  24424
  Copyright terms: Public domain W3C validator