Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlim0 | Structured version Visualization version GIF version |
Description: Express the predicate 𝐵(𝑧) converges to 0. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
Ref | Expression |
---|---|
rlim0.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
rlim0.2 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
rlim0 | ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlim0.1 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) | |
2 | rlim0.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | 0cnd 9912 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
4 | 1, 2, 3 | rlim2 14075 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥))) |
5 | subid1 10180 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
6 | 5 | fveq2d 6107 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
7 | 6 | breq1d 4593 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
8 | 7 | imbi2d 329 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
9 | 8 | ralimi 2936 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ → ∀𝑧 ∈ 𝐴 ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
10 | ralbi 3050 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) | |
11 | 1, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
12 | 11 | rexbidv 3034 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
13 | 12 | ralbidv 2969 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
14 | 4, 13 | bitrd 267 | 1 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 ℝcr 9814 0cc0 9815 < clt 9953 ≤ cle 9954 − cmin 10145 ℝ+crp 11708 abscabs 13822 ⇝𝑟 crli 14064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-sub 10147 df-rlim 14068 |
This theorem is referenced by: o1rlimmul 14197 dvfsumrlim 23598 rlimcxp 24500 |
Copyright terms: Public domain | W3C validator |