MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem3 Structured version   Visualization version   GIF version

Theorem elqaalem3 23880
Description: Lemma for elqaa 23881. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
Assertion
Ref Expression
elqaalem3 (𝜑𝐴 ∈ 𝔸)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝑁,𝑛   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝑅(𝑛)   𝐹(𝑘,𝑛)

Proof of Theorem elqaalem3
Dummy variables 𝑓 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elqaa.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cnex 9896 . . . . . . . 8 ℂ ∈ V
32a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
4 elqaa.6 . . . . . . . . 9 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
5 fvex 6113 . . . . . . . . 9 (seq0( · , 𝑁)‘(deg‘𝐹)) ∈ V
64, 5eqeltri 2684 . . . . . . . 8 𝑅 ∈ V
76a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑅 ∈ V)
8 fvex 6113 . . . . . . . 8 (𝐹𝑧) ∈ V
98a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ V)
10 fconstmpt 5085 . . . . . . . 8 (ℂ × {𝑅}) = (𝑧 ∈ ℂ ↦ 𝑅)
1110a1i 11 . . . . . . 7 (𝜑 → (ℂ × {𝑅}) = (𝑧 ∈ ℂ ↦ 𝑅))
12 elqaa.2 . . . . . . . . . 10 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
1312eldifad 3552 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘ℚ))
14 plyf 23758 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℚ) → 𝐹:ℂ⟶ℂ)
1513, 14syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
1615feqmptd 6159 . . . . . . 7 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
173, 7, 9, 11, 16offval2 6812 . . . . . 6 (𝜑 → ((ℂ × {𝑅}) ∘𝑓 · 𝐹) = (𝑧 ∈ ℂ ↦ (𝑅 · (𝐹𝑧))))
18 fzfid 12634 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (0...(deg‘𝐹)) ∈ Fin)
19 nn0uz 11598 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
20 0zd 11266 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℤ)
21 ssrab2 3650 . . . . . . . . . . . . . . 15 {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ ℕ
22 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
2322oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑚 → ((𝐵𝑘) · 𝑛) = ((𝐵𝑚) · 𝑛))
2423eleq1d 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑚 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · 𝑛) ∈ ℤ))
2524rabbidv 3164 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
2625infeq1d 8266 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
27 elqaa.5 . . . . . . . . . . . . . . . . . 18 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
28 ltso 9997 . . . . . . . . . . . . . . . . . . 19 < Or ℝ
2928infex 8282 . . . . . . . . . . . . . . . . . 18 inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V
3026, 27, 29fvmpt 6191 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑁𝑚) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
3130adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
32 nnuz 11599 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
3321, 32sseqtri 3600 . . . . . . . . . . . . . . . . 17 {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1)
34 0z 11265 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℤ
35 zq 11670 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℤ → 0 ∈ ℚ)
3634, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℚ
37 elqaa.4 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = (coeff‘𝐹)
3837coef2 23791 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ)
3913, 36, 38sylancl 693 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵:ℕ0⟶ℚ)
4039ffvelrnda 6267 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℚ)
41 qmulz 11667 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝑚) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
4240, 41syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
43 rabn0 3912 . . . . . . . . . . . . . . . . . 18 ({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
4442, 43sylibr 223 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅)
45 infssuzcl 11648 . . . . . . . . . . . . . . . . 17 (({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4633, 44, 45sylancr 694 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4731, 46eqeltrd 2688 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4821, 47sseldi 3566 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ℕ)
49 nnmulcl 10920 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑚 · 𝑘) ∈ ℕ)
5049adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝑚 · 𝑘) ∈ ℕ)
5119, 20, 48, 50seqf 12684 . . . . . . . . . . . . 13 (𝜑 → seq0( · , 𝑁):ℕ0⟶ℕ)
52 dgrcl 23793 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℚ) → (deg‘𝐹) ∈ ℕ0)
5313, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝐹) ∈ ℕ0)
5451, 53ffvelrnd 6268 . . . . . . . . . . . 12 (𝜑 → (seq0( · , 𝑁)‘(deg‘𝐹)) ∈ ℕ)
554, 54syl5eqel 2692 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
5655nncnd 10913 . . . . . . . . . 10 (𝜑𝑅 ∈ ℂ)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → 𝑅 ∈ ℂ)
58 elfznn0 12302 . . . . . . . . . 10 (𝑚 ∈ (0...(deg‘𝐹)) → 𝑚 ∈ ℕ0)
5937coef3 23792 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℚ) → 𝐵:ℕ0⟶ℂ)
6013, 59syl 17 . . . . . . . . . . . . 13 (𝜑𝐵:ℕ0⟶ℂ)
6160adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ)
6261ffvelrnda 6267 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℂ)
63 expcl 12740 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑧𝑚) ∈ ℂ)
6463adantll 746 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝑧𝑚) ∈ ℂ)
6562, 64mulcld 9939 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → ((𝐵𝑚) · (𝑧𝑚)) ∈ ℂ)
6658, 65sylan2 490 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ (0...(deg‘𝐹))) → ((𝐵𝑚) · (𝑧𝑚)) ∈ ℂ)
6718, 57, 66fsummulc2 14358 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑅 · Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚))) = Σ𝑚 ∈ (0...(deg‘𝐹))(𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
68 eqid 2610 . . . . . . . . . . 11 (deg‘𝐹) = (deg‘𝐹)
6937, 68coeid2 23799 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℚ) ∧ 𝑧 ∈ ℂ) → (𝐹𝑧) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚)))
7013, 69sylan 487 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚)))
7170oveq2d 6565 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) = (𝑅 · Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚))))
7257adantr 480 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → 𝑅 ∈ ℂ)
7372, 62, 64mulassd 9942 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → ((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = (𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7458, 73sylan2 490 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ (0...(deg‘𝐹))) → ((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = (𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7574sumeq2dv 14281 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = Σ𝑚 ∈ (0...(deg‘𝐹))(𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7667, 71, 753eqtr4d 2654 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚)))
7776mpteq2dva 4672 . . . . . 6 (𝜑 → (𝑧 ∈ ℂ ↦ (𝑅 · (𝐹𝑧))) = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))))
7817, 77eqtrd 2644 . . . . 5 (𝜑 → ((ℂ × {𝑅}) ∘𝑓 · 𝐹) = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))))
79 zsscn 11262 . . . . . . 7 ℤ ⊆ ℂ
8079a1i 11 . . . . . 6 (𝜑 → ℤ ⊆ ℂ)
8156adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑅 ∈ ℂ)
8248nncnd 10913 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ℂ)
8348nnne0d 10942 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ≠ 0)
8481, 82, 83divcan2d 10682 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑁𝑚) · (𝑅 / (𝑁𝑚))) = 𝑅)
8584oveq2d 6565 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐵𝑚) · ((𝑁𝑚) · (𝑅 / (𝑁𝑚)))) = ((𝐵𝑚) · 𝑅))
8660ffvelrnda 6267 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℂ)
8781, 82, 83divcld 10680 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑅 / (𝑁𝑚)) ∈ ℂ)
8886, 82, 87mulassd 9942 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))) = ((𝐵𝑚) · ((𝑁𝑚) · (𝑅 / (𝑁𝑚)))))
8981, 86mulcomd 9940 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑅 · (𝐵𝑚)) = ((𝐵𝑚) · 𝑅))
9085, 88, 893eqtr4rd 2655 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑅 · (𝐵𝑚)) = (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))))
9158, 90sylan2 490 . . . . . . 7 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 · (𝐵𝑚)) = (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))))
92 oveq2 6557 . . . . . . . . . . . . 13 (𝑛 = (𝑁𝑚) → ((𝐵𝑚) · 𝑛) = ((𝐵𝑚) · (𝑁𝑚)))
9392eleq1d 2672 . . . . . . . . . . . 12 (𝑛 = (𝑁𝑚) → (((𝐵𝑚) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ))
9493elrab 3331 . . . . . . . . . . 11 ((𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ↔ ((𝑁𝑚) ∈ ℕ ∧ ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ))
9594simprbi 479 . . . . . . . . . 10 ((𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
9647, 95syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
9758, 96sylan2 490 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
98 elqaa.3 . . . . . . . . . 10 (𝜑 → (𝐹𝐴) = 0)
99 eqid 2610 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝑚))) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝑚)))
1001, 12, 98, 37, 27, 4, 99elqaalem2 23879 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁𝑚)) = 0)
10155adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → 𝑅 ∈ ℕ)
10258, 48sylan2 490 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑁𝑚) ∈ ℕ)
103 nnre 10904 . . . . . . . . . . 11 (𝑅 ∈ ℕ → 𝑅 ∈ ℝ)
104 nnrp 11718 . . . . . . . . . . 11 ((𝑁𝑚) ∈ ℕ → (𝑁𝑚) ∈ ℝ+)
105 mod0 12537 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ (𝑁𝑚) ∈ ℝ+) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
106103, 104, 105syl2an 493 . . . . . . . . . 10 ((𝑅 ∈ ℕ ∧ (𝑁𝑚) ∈ ℕ) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
107101, 102, 106syl2anc 691 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
108100, 107mpbid 221 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 / (𝑁𝑚)) ∈ ℤ)
10997, 108zmulcld 11364 . . . . . . 7 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))) ∈ ℤ)
11091, 109eqeltrd 2688 . . . . . 6 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 · (𝐵𝑚)) ∈ ℤ)
11180, 53, 110elplyd 23762 . . . . 5 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))) ∈ (Poly‘ℤ))
11278, 111eqeltrd 2688 . . . 4 (𝜑 → ((ℂ × {𝑅}) ∘𝑓 · 𝐹) ∈ (Poly‘ℤ))
113 eldifsn 4260 . . . . . . 7 (𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℚ) ∧ 𝐹 ≠ 0𝑝))
11412, 113sylib 207 . . . . . 6 (𝜑 → (𝐹 ∈ (Poly‘ℚ) ∧ 𝐹 ≠ 0𝑝))
115114simprd 478 . . . . 5 (𝜑𝐹 ≠ 0𝑝)
116 oveq1 6556 . . . . . . 7 (((ℂ × {𝑅}) ∘𝑓 · 𝐹) = 0𝑝 → (((ℂ × {𝑅}) ∘𝑓 · 𝐹) ∘𝑓 / (ℂ × {𝑅})) = (0𝑝𝑓 / (ℂ × {𝑅})))
11715ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
11855nnne0d 10942 . . . . . . . . . . . 12 (𝜑𝑅 ≠ 0)
119118adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → 𝑅 ≠ 0)
120117, 57, 119divcan3d 10685 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝑅 · (𝐹𝑧)) / 𝑅) = (𝐹𝑧))
121120mpteq2dva 4672 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝑅 · (𝐹𝑧)) / 𝑅)) = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
122 ovex 6577 . . . . . . . . . . 11 (𝑅 · (𝐹𝑧)) ∈ V
123122a1i 11 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) ∈ V)
1243, 123, 7, 17, 11offval2 6812 . . . . . . . . 9 (𝜑 → (((ℂ × {𝑅}) ∘𝑓 · 𝐹) ∘𝑓 / (ℂ × {𝑅})) = (𝑧 ∈ ℂ ↦ ((𝑅 · (𝐹𝑧)) / 𝑅)))
125121, 124, 163eqtr4d 2654 . . . . . . . 8 (𝜑 → (((ℂ × {𝑅}) ∘𝑓 · 𝐹) ∘𝑓 / (ℂ × {𝑅})) = 𝐹)
12656, 118div0d 10679 . . . . . . . . . 10 (𝜑 → (0 / 𝑅) = 0)
127126mpteq2dv 4673 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ (0 / 𝑅)) = (𝑧 ∈ ℂ ↦ 0))
128 0cnd 9912 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → 0 ∈ ℂ)
129 df-0p 23243 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
130 fconstmpt 5085 . . . . . . . . . . . 12 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
131129, 130eqtri 2632 . . . . . . . . . . 11 0𝑝 = (𝑧 ∈ ℂ ↦ 0)
132131a1i 11 . . . . . . . . . 10 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ 0))
1333, 128, 7, 132, 11offval2 6812 . . . . . . . . 9 (𝜑 → (0𝑝𝑓 / (ℂ × {𝑅})) = (𝑧 ∈ ℂ ↦ (0 / 𝑅)))
134127, 133, 1323eqtr4d 2654 . . . . . . . 8 (𝜑 → (0𝑝𝑓 / (ℂ × {𝑅})) = 0𝑝)
135125, 134eqeq12d 2625 . . . . . . 7 (𝜑 → ((((ℂ × {𝑅}) ∘𝑓 · 𝐹) ∘𝑓 / (ℂ × {𝑅})) = (0𝑝𝑓 / (ℂ × {𝑅})) ↔ 𝐹 = 0𝑝))
136116, 135syl5ib 233 . . . . . 6 (𝜑 → (((ℂ × {𝑅}) ∘𝑓 · 𝐹) = 0𝑝𝐹 = 0𝑝))
137136necon3d 2803 . . . . 5 (𝜑 → (𝐹 ≠ 0𝑝 → ((ℂ × {𝑅}) ∘𝑓 · 𝐹) ≠ 0𝑝))
138115, 137mpd 15 . . . 4 (𝜑 → ((ℂ × {𝑅}) ∘𝑓 · 𝐹) ≠ 0𝑝)
139 eldifsn 4260 . . . 4 (((ℂ × {𝑅}) ∘𝑓 · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ (((ℂ × {𝑅}) ∘𝑓 · 𝐹) ∈ (Poly‘ℤ) ∧ ((ℂ × {𝑅}) ∘𝑓 · 𝐹) ≠ 0𝑝))
140112, 138, 139sylanbrc 695 . . 3 (𝜑 → ((ℂ × {𝑅}) ∘𝑓 · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}))
1416fconst 6004 . . . . . . 7 (ℂ × {𝑅}):ℂ⟶{𝑅}
142 ffn 5958 . . . . . . 7 ((ℂ × {𝑅}):ℂ⟶{𝑅} → (ℂ × {𝑅}) Fn ℂ)
143141, 142mp1i 13 . . . . . 6 (𝜑 → (ℂ × {𝑅}) Fn ℂ)
144 ffn 5958 . . . . . . 7 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
14515, 144syl 17 . . . . . 6 (𝜑𝐹 Fn ℂ)
146 inidm 3784 . . . . . 6 (ℂ ∩ ℂ) = ℂ
1476fvconst2 6374 . . . . . . 7 (𝐴 ∈ ℂ → ((ℂ × {𝑅})‘𝐴) = 𝑅)
148147adantl 481 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → ((ℂ × {𝑅})‘𝐴) = 𝑅)
14998adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → (𝐹𝐴) = 0)
150143, 145, 3, 3, 146, 148, 149ofval 6804 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (((ℂ × {𝑅}) ∘𝑓 · 𝐹)‘𝐴) = (𝑅 · 0))
1511, 150mpdan 699 . . . 4 (𝜑 → (((ℂ × {𝑅}) ∘𝑓 · 𝐹)‘𝐴) = (𝑅 · 0))
15256mul01d 10114 . . . 4 (𝜑 → (𝑅 · 0) = 0)
153151, 152eqtrd 2644 . . 3 (𝜑 → (((ℂ × {𝑅}) ∘𝑓 · 𝐹)‘𝐴) = 0)
154 fveq1 6102 . . . . 5 (𝑓 = ((ℂ × {𝑅}) ∘𝑓 · 𝐹) → (𝑓𝐴) = (((ℂ × {𝑅}) ∘𝑓 · 𝐹)‘𝐴))
155154eqeq1d 2612 . . . 4 (𝑓 = ((ℂ × {𝑅}) ∘𝑓 · 𝐹) → ((𝑓𝐴) = 0 ↔ (((ℂ × {𝑅}) ∘𝑓 · 𝐹)‘𝐴) = 0))
156155rspcev 3282 . . 3 ((((ℂ × {𝑅}) ∘𝑓 · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (((ℂ × {𝑅}) ∘𝑓 · 𝐹)‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
157140, 153, 156syl2anc 691 . 2 (𝜑 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
158 elaa 23875 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
1591, 157, 158sylanbrc 695 1 (𝜑𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  c0 3874  {csn 4125  cmpt 4643   × cxp 5036   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑓 cof 6793  infcinf 8230  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  cq 11664  +crp 11708  ...cfz 12197   mod cmo 12530  seqcseq 12663  cexp 12722  Σcsu 14264  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747  𝔸caa 23873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751  df-aa 23874
This theorem is referenced by:  elqaa  23881
  Copyright terms: Public domain W3C validator