MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem1 Structured version   Visualization version   GIF version

Theorem aannenlem1 23887
Description: Lemma for aannen 23890. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Distinct variable group:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem1
StepHypRef Expression
1 breq2 4587 . . . . . . 7 (𝑎 = 𝐴 → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘𝑑) ≤ 𝐴))
2 breq2 4587 . . . . . . . 8 (𝑎 = 𝐴 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
32ralbidv 2969 . . . . . . 7 (𝑎 = 𝐴 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
41, 33anbi23d 1394 . . . . . 6 (𝑎 = 𝐴 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)))
54rabbidv 3164 . . . . 5 (𝑎 = 𝐴 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} = {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)})
65rexeqdv 3122 . . . 4 (𝑎 = 𝐴 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0))
76rabbidv 3164 . . 3 (𝑎 = 𝐴 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
8 aannenlem.a . . 3 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
9 cnex 9896 . . . 4 ℂ ∈ V
109rabex 4740 . . 3 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ V
117, 8, 10fvmpt 6191 . 2 (𝐴 ∈ ℕ0 → (𝐻𝐴) = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
12 iunrab 4503 . . 3 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0}
13 fzfi 12633 . . . . . . 7 (-𝐴...𝐴) ∈ Fin
14 fzfi 12633 . . . . . . 7 (0...𝐴) ∈ Fin
15 mapfi 8145 . . . . . . 7 (((-𝐴...𝐴) ∈ Fin ∧ (0...𝐴) ∈ Fin) → ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ Fin)
1613, 14, 15mp2an 704 . . . . . 6 ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ Fin
1716a1i 11 . . . . 5 (𝐴 ∈ ℕ0 → ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ Fin)
18 ovex 6577 . . . . . 6 ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ V
19 neeq1 2844 . . . . . . . . . . 11 (𝑑 = 𝑎 → (𝑑 ≠ 0𝑝𝑎 ≠ 0𝑝))
20 fveq2 6103 . . . . . . . . . . . 12 (𝑑 = 𝑎 → (deg‘𝑑) = (deg‘𝑎))
2120breq1d 4593 . . . . . . . . . . 11 (𝑑 = 𝑎 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑎) ≤ 𝐴))
22 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑑 = 𝑎 → (coeff‘𝑑) = (coeff‘𝑎))
2322fveq1d 6105 . . . . . . . . . . . . . 14 (𝑑 = 𝑎 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑎)‘𝑒))
2423fveq2d 6107 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑎)‘𝑒)))
2524breq1d 4593 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2625ralbidv 2969 . . . . . . . . . . 11 (𝑑 = 𝑎 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2719, 21, 263anbi123d 1391 . . . . . . . . . 10 (𝑑 = 𝑎 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
2827elrab 3331 . . . . . . . . 9 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
29 simp3 1056 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)
3029anim2i 591 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
3128, 30sylbi 206 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
32 0z 11265 . . . . . . . . . . . . . . 15 0 ∈ ℤ
33 eqid 2610 . . . . . . . . . . . . . . . 16 (coeff‘𝑎) = (coeff‘𝑎)
3433coef2 23791 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3532, 34mpan2 703 . . . . . . . . . . . . . 14 (𝑎 ∈ (Poly‘ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3635ad2antrl 760 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶ℤ)
3736ffnd 5959 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎) Fn ℕ0)
3835adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (coeff‘𝑎):ℕ0⟶ℤ)
3938ffvelrnda 6267 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℤ)
4039zred 11358 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℝ)
41 nn0re 11178 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4241ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℝ)
4340, 42absled 14017 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
44 nn0z 11277 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
4544ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℤ)
4645znegcld 11360 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → -𝐴 ∈ ℤ)
47 elfz 12203 . . . . . . . . . . . . . . . . . 18 ((((coeff‘𝑎)‘𝑒) ∈ ℤ ∧ -𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4839, 46, 45, 47syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4943, 48bitr4d 270 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5049biimpd 218 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5150ralimdva 2945 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5251impr 647 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴))
53 fnfvrnss 6297 . . . . . . . . . . . . 13 (((coeff‘𝑎) Fn ℕ0 ∧ ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
5437, 52, 53syl2anc 691 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
55 df-f 5808 . . . . . . . . . . . 12 ((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ↔ ((coeff‘𝑎) Fn ℕ0 ∧ ran (coeff‘𝑎) ⊆ (-𝐴...𝐴)))
5637, 54, 55sylanbrc 695 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶(-𝐴...𝐴))
57 fz0ssnn0 12304 . . . . . . . . . . 11 (0...𝐴) ⊆ ℕ0
58 fssres 5983 . . . . . . . . . . 11 (((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ∧ (0...𝐴) ⊆ ℕ0) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
5956, 57, 58sylancl 693 . . . . . . . . . 10 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
60 ovex 6577 . . . . . . . . . . 11 (-𝐴...𝐴) ∈ V
61 ovex 6577 . . . . . . . . . . 11 (0...𝐴) ∈ V
6260, 61elmap 7772 . . . . . . . . . 10 (((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ↔ ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
6359, 62sylibr 223 . . . . . . . . 9 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑𝑚 (0...𝐴)))
6463ex 449 . . . . . . . 8 (𝐴 ∈ ℕ0 → ((𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑𝑚 (0...𝐴))))
6531, 64syl5 33 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑𝑚 (0...𝐴))))
66 simp2 1055 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → (deg‘𝑎) ≤ 𝐴)
6766anim2i 591 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
6828, 67sylbi 206 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
69 neeq1 2844 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝑑 ≠ 0𝑝𝑏 ≠ 0𝑝))
70 fveq2 6103 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (deg‘𝑑) = (deg‘𝑏))
7170breq1d 4593 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑏) ≤ 𝐴))
72 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑑 = 𝑏 → (coeff‘𝑑) = (coeff‘𝑏))
7372fveq1d 6105 . . . . . . . . . . . . . 14 (𝑑 = 𝑏 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑏)‘𝑒))
7473fveq2d 6107 . . . . . . . . . . . . 13 (𝑑 = 𝑏 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑏)‘𝑒)))
7574breq1d 4593 . . . . . . . . . . . 12 (𝑑 = 𝑏 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7675ralbidv 2969 . . . . . . . . . . 11 (𝑑 = 𝑏 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7769, 71, 763anbi123d 1391 . . . . . . . . . 10 (𝑑 = 𝑏 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
7877elrab 3331 . . . . . . . . 9 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
79 simp2 1055 . . . . . . . . . 10 ((𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴) → (deg‘𝑏) ≤ 𝐴)
8079anim2i 591 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)) → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
8178, 80sylbi 206 . . . . . . . 8 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
82 simplll 794 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 ∈ (Poly‘ℤ))
83 plyf 23758 . . . . . . . . . . . . 13 (𝑎 ∈ (Poly‘ℤ) → 𝑎:ℂ⟶ℂ)
84 ffn 5958 . . . . . . . . . . . . 13 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
8582, 83, 843syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 Fn ℂ)
86 simplrl 796 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 ∈ (Poly‘ℤ))
87 plyf 23758 . . . . . . . . . . . . 13 (𝑏 ∈ (Poly‘ℤ) → 𝑏:ℂ⟶ℂ)
88 ffn 5958 . . . . . . . . . . . . 13 (𝑏:ℂ⟶ℂ → 𝑏 Fn ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 Fn ℂ)
90 simplrr 797 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9291fveq1d 6105 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑))
93 fvres 6117 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
9493adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
95 fvres 6117 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9695adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9792, 94, 963eqtr3d 2652 . . . . . . . . . . . . . . 15 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎)‘𝑑) = ((coeff‘𝑏)‘𝑑))
9897oveq1d 6564 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = (((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
9998sumeq2dv 14281 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
100 simp-4l 802 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑎 ∈ (Poly‘ℤ))
101 simp-4r 803 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ≤ 𝐴)
102 dgrcl 23793 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Poly‘ℤ) → (deg‘𝑎) ∈ ℕ0)
103 nn0z 11277 . . . . . . . . . . . . . . . . 17 ((deg‘𝑎) ∈ ℕ0 → (deg‘𝑎) ∈ ℤ)
104100, 102, 1033syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ∈ ℤ)
105 simplrl 796 . . . . . . . . . . . . . . . . 17 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℕ0)
106105nn0zd 11356 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℤ)
107 eluz 11577 . . . . . . . . . . . . . . . 16 (((deg‘𝑎) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
108104, 106, 107syl2anc 691 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
109101, 108mpbird 246 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑎)))
110 simpr 476 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑐 ∈ ℂ)
111 eqid 2610 . . . . . . . . . . . . . . 15 (deg‘𝑎) = (deg‘𝑎)
11233, 111coeid3 23800 . . . . . . . . . . . . . 14 ((𝑎 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑎)) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
113100, 109, 110, 112syl3anc 1318 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
114 simp1rl 1119 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
1151143expa 1257 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
116 simplrr 797 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → (deg‘𝑏) ≤ 𝐴)
117116adantr 480 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ≤ 𝐴)
118 dgrcl 23793 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Poly‘ℤ) → (deg‘𝑏) ∈ ℕ0)
119 nn0z 11277 . . . . . . . . . . . . . . . . 17 ((deg‘𝑏) ∈ ℕ0 → (deg‘𝑏) ∈ ℤ)
120115, 118, 1193syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ∈ ℤ)
121 eluz 11577 . . . . . . . . . . . . . . . 16 (((deg‘𝑏) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
122120, 106, 121syl2anc 691 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
123117, 122mpbird 246 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑏)))
124 eqid 2610 . . . . . . . . . . . . . . 15 (coeff‘𝑏) = (coeff‘𝑏)
125 eqid 2610 . . . . . . . . . . . . . . 15 (deg‘𝑏) = (deg‘𝑏)
126124, 125coeid3 23800 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑏)) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
127115, 123, 110, 126syl3anc 1318 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
12899, 113, 1273eqtr4d 2654 . . . . . . . . . . . 12 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = (𝑏𝑐))
12985, 89, 128eqfnfvd 6222 . . . . . . . . . . 11 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 = 𝑏)
130129expr 641 . . . . . . . . . 10 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) → 𝑎 = 𝑏))
131 fveq2 6103 . . . . . . . . . . 11 (𝑎 = 𝑏 → (coeff‘𝑎) = (coeff‘𝑏))
132131reseq1d 5316 . . . . . . . . . 10 (𝑎 = 𝑏 → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
133130, 132impbid1 214 . . . . . . . . 9 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏))
134133expcom 450 . . . . . . . 8 (𝐴 ∈ ℕ0 → (((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13568, 81, 134syl2ani 686 . . . . . . 7 (𝐴 ∈ ℕ0 → ((𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∧ 𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)}) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13665, 135dom2d 7882 . . . . . 6 (𝐴 ∈ ℕ0 → (((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ V → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑𝑚 (0...𝐴))))
13718, 136mpi 20 . . . . 5 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑𝑚 (0...𝐴)))
138 domfi 8066 . . . . 5 ((((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ Fin ∧ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑𝑚 (0...𝐴))) → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
13917, 137, 138syl2anc 691 . . . 4 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
140 neeq1 2844 . . . . . . . . 9 (𝑑 = 𝑐 → (𝑑 ≠ 0𝑝𝑐 ≠ 0𝑝))
141 fveq2 6103 . . . . . . . . . 10 (𝑑 = 𝑐 → (deg‘𝑑) = (deg‘𝑐))
142141breq1d 4593 . . . . . . . . 9 (𝑑 = 𝑐 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑐) ≤ 𝐴))
143 fveq2 6103 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → (coeff‘𝑑) = (coeff‘𝑐))
144143fveq1d 6105 . . . . . . . . . . . 12 (𝑑 = 𝑐 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑐)‘𝑒))
145144fveq2d 6107 . . . . . . . . . . 11 (𝑑 = 𝑐 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑐)‘𝑒)))
146145breq1d 4593 . . . . . . . . . 10 (𝑑 = 𝑐 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
147146ralbidv 2969 . . . . . . . . 9 (𝑑 = 𝑐 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
148140, 142, 1473anbi123d 1391 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
149148elrab 3331 . . . . . . 7 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
150 simp1 1054 . . . . . . . 8 ((𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴) → 𝑐 ≠ 0𝑝)
151150anim2i 591 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)) → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
152149, 151sylbi 206 . . . . . 6 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
153 plyf 23758 . . . . . . . . . . . . 13 (𝑐 ∈ (Poly‘ℤ) → 𝑐:ℂ⟶ℂ)
154153ffnd 5959 . . . . . . . . . . . 12 (𝑐 ∈ (Poly‘ℤ) → 𝑐 Fn ℂ)
155154adantr 480 . . . . . . . . . . 11 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → 𝑐 Fn ℂ)
156 fniniseg 6246 . . . . . . . . . . 11 (𝑐 Fn ℂ → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
157155, 156syl 17 . . . . . . . . . 10 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
158 fveq2 6103 . . . . . . . . . . . 12 (𝑏 = 𝑎 → (𝑐𝑏) = (𝑐𝑎))
159158eqeq1d 2612 . . . . . . . . . . 11 (𝑏 = 𝑎 → ((𝑐𝑏) = 0 ↔ (𝑐𝑎) = 0))
160159elrab 3331 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0))
161157, 160syl6rbbr 278 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ 𝑎 ∈ (𝑐 “ {0})))
162161eqrdv 2608 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = (𝑐 “ {0}))
163 eqid 2610 . . . . . . . . . 10 (𝑐 “ {0}) = (𝑐 “ {0})
164163fta1 23867 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → ((𝑐 “ {0}) ∈ Fin ∧ (#‘(𝑐 “ {0})) ≤ (deg‘𝑐)))
165164simpld 474 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑐 “ {0}) ∈ Fin)
166162, 165eqeltrd 2688 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
167166a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
168152, 167syl5 33 . . . . 5 (𝐴 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
169168ralrimiv 2948 . . . 4 (𝐴 ∈ ℕ0 → ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
170 iunfi 8137 . . . 4 (({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin ∧ ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin) → 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
171139, 169, 170syl2anc 691 . . 3 (𝐴 ∈ ℕ0 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
17212, 171syl5eqelr 2693 . 2 (𝐴 ∈ ℕ0 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ Fin)
17311, 172eqeltrd 2688 1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  {csn 4125   ciun 4455   class class class wbr 4583  cmpt 4643  ccnv 5037  ran crn 5039  cres 5040  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cdom 7839  Fincfn 7841  cc 9813  cr 9814  0cc0 9815   · cmul 9820  cle 9954  -cneg 10146  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  #chash 12979  abscabs 13822  Σcsu 14264  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-idp 23749  df-coe 23750  df-dgr 23751  df-quot 23850
This theorem is referenced by:  aannenlem3  23889
  Copyright terms: Public domain W3C validator