MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem1 Structured version   Unicode version

Theorem aannenlem1 22893
Description: Lemma for aannen 22896. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
Assertion
Ref Expression
aannenlem1  |-  ( A  e.  NN0  ->  ( H `
 A )  e. 
Fin )
Distinct variable group:    A, a, b, c, d, e
Allowed substitution hints:    H( e, a, b, c, d)

Proof of Theorem aannenlem1
StepHypRef Expression
1 breq2 4443 . . . . . . 7  |-  ( a  =  A  ->  (
(deg `  d )  <_  a  <->  (deg `  d )  <_  A ) )
2 breq2 4443 . . . . . . . 8  |-  ( a  =  A  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_ 
a  <->  ( abs `  (
(coeff `  d ) `  e ) )  <_  A ) )
32ralbidv 2893 . . . . . . 7  |-  ( a  =  A  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a  <->  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) )
41, 33anbi23d 1300 . . . . . 6  |-  ( a  =  A  ->  (
( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
)  <->  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) ) )
54rabbidv 3098 . . . . 5  |-  ( a  =  A  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  =  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) } )
65rexeqdv 3058 . . . 4  |-  ( a  =  A  ->  ( E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0  <->  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 ) )
76rabbidv 3098 . . 3  |-  ( a  =  A  ->  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 } )
8 aannenlem.a . . 3  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
9 cnex 9562 . . . 4  |-  CC  e.  _V
109rabex 4588 . . 3  |-  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 }  e.  _V
117, 8, 10fvmpt 5931 . 2  |-  ( A  e.  NN0  ->  ( H `
 A )  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 } )
12 iunrab 4362 . . 3  |-  U_ c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 }
13 fzfi 12067 . . . . . . 7  |-  ( -u A ... A )  e. 
Fin
14 fzfi 12067 . . . . . . 7  |-  ( 0 ... A )  e. 
Fin
15 mapfi 7808 . . . . . . 7  |-  ( ( ( -u A ... A )  e.  Fin  /\  ( 0 ... A
)  e.  Fin )  ->  ( ( -u A ... A )  ^m  (
0 ... A ) )  e.  Fin )
1613, 14, 15mp2an 670 . . . . . 6  |-  ( (
-u A ... A
)  ^m  ( 0 ... A ) )  e.  Fin
1716a1i 11 . . . . 5  |-  ( A  e.  NN0  ->  ( (
-u A ... A
)  ^m  ( 0 ... A ) )  e.  Fin )
18 ovex 6298 . . . . . 6  |-  ( (
-u A ... A
)  ^m  ( 0 ... A ) )  e.  _V
19 neeq1 2735 . . . . . . . . . . 11  |-  ( d  =  a  ->  (
d  =/=  0p  <-> 
a  =/=  0p ) )
20 fveq2 5848 . . . . . . . . . . . 12  |-  ( d  =  a  ->  (deg `  d )  =  (deg
`  a ) )
2120breq1d 4449 . . . . . . . . . . 11  |-  ( d  =  a  ->  (
(deg `  d )  <_  A  <->  (deg `  a )  <_  A ) )
22 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( d  =  a  ->  (coeff `  d )  =  (coeff `  a ) )
2322fveq1d 5850 . . . . . . . . . . . . . 14  |-  ( d  =  a  ->  (
(coeff `  d ) `  e )  =  ( (coeff `  a ) `  e ) )
2423fveq2d 5852 . . . . . . . . . . . . 13  |-  ( d  =  a  ->  ( abs `  ( (coeff `  d ) `  e
) )  =  ( abs `  ( (coeff `  a ) `  e
) ) )
2524breq1d 4449 . . . . . . . . . . . 12  |-  ( d  =  a  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_  A 
<->  ( abs `  (
(coeff `  a ) `  e ) )  <_  A ) )
2625ralbidv 2893 . . . . . . . . . . 11  |-  ( d  =  a  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A  <->  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) )
2719, 21, 263anbi123d 1297 . . . . . . . . . 10  |-  ( d  =  a  ->  (
( d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
)  <->  ( a  =/=  0p  /\  (deg `  a )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) ) )
2827elrab 3254 . . . . . . . . 9  |-  ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  <->  ( a  e.  (Poly `  ZZ )  /\  ( a  =/=  0p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) ) )
29 simp3 996 . . . . . . . . . 10  |-  ( ( a  =/=  0p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
)  ->  A. e  e.  NN0  ( abs `  (
(coeff `  a ) `  e ) )  <_  A )
3029anim2i 567 . . . . . . . . 9  |-  ( ( a  e.  (Poly `  ZZ )  /\  (
a  =/=  0p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) )  ->  (
a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  (
(coeff `  a ) `  e ) )  <_  A ) )
3128, 30sylbi 195 . . . . . . . 8  |-  ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  (
(coeff `  a ) `  e ) )  <_  A ) )
32 0z 10871 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
33 eqid 2454 . . . . . . . . . . . . . . . 16  |-  (coeff `  a )  =  (coeff `  a )
3433coef2 22797 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  (Poly `  ZZ )  /\  0  e.  ZZ )  ->  (coeff `  a ) : NN0 --> ZZ )
3532, 34mpan2 669 . . . . . . . . . . . . . 14  |-  ( a  e.  (Poly `  ZZ )  ->  (coeff `  a
) : NN0 --> ZZ )
3635ad2antrl 725 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  (coeff `  a
) : NN0 --> ZZ )
37 ffn 5713 . . . . . . . . . . . . 13  |-  ( (coeff `  a ) : NN0 --> ZZ 
->  (coeff `  a )  Fn  NN0 )
3836, 37syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  (coeff `  a
)  Fn  NN0 )
3935adantl 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  ->  (coeff `  a ) : NN0 --> ZZ )
4039ffvelrnda 6007 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
(coeff `  a ) `  e )  e.  ZZ )
4140zred 10965 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
(coeff `  a ) `  e )  e.  RR )
42 nn0re 10800 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  NN0  ->  A  e.  RR )
4342ad2antrr 723 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  A  e.  RR )
4441, 43absled 13347 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
( abs `  (
(coeff `  a ) `  e ) )  <_  A 
<->  ( -u A  <_ 
( (coeff `  a
) `  e )  /\  ( (coeff `  a
) `  e )  <_  A ) ) )
45 nn0z 10883 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  NN0  ->  A  e.  ZZ )
4645ad2antrr 723 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  A  e.  ZZ )
4746znegcld 10967 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  -u A  e.  ZZ )
48 elfz 11681 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (coeff `  a
) `  e )  e.  ZZ  /\  -u A  e.  ZZ  /\  A  e.  ZZ )  ->  (
( (coeff `  a
) `  e )  e.  ( -u A ... A )  <->  ( -u A  <_  ( (coeff `  a
) `  e )  /\  ( (coeff `  a
) `  e )  <_  A ) ) )
4940, 47, 46, 48syl3anc 1226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
( (coeff `  a
) `  e )  e.  ( -u A ... A )  <->  ( -u A  <_  ( (coeff `  a
) `  e )  /\  ( (coeff `  a
) `  e )  <_  A ) ) )
5044, 49bitr4d 256 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
( abs `  (
(coeff `  a ) `  e ) )  <_  A 
<->  ( (coeff `  a
) `  e )  e.  ( -u A ... A ) ) )
5150biimpd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
( abs `  (
(coeff `  a ) `  e ) )  <_  A  ->  ( (coeff `  a ) `  e
)  e.  ( -u A ... A ) ) )
5251ralimdva 2862 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A  ->  A. e  e.  NN0  ( (coeff `  a ) `  e )  e.  (
-u A ... A
) ) )
5352impr 617 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  A. e  e.  NN0  ( (coeff `  a ) `  e
)  e.  ( -u A ... A ) )
54 fnfvrnss 6035 . . . . . . . . . . . . 13  |-  ( ( (coeff `  a )  Fn  NN0  /\  A. e  e.  NN0  ( (coeff `  a ) `  e
)  e.  ( -u A ... A ) )  ->  ran  (coeff `  a
)  C_  ( -u A ... A ) )
5538, 53, 54syl2anc 659 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  ran  (coeff `  a )  C_  ( -u A ... A ) )
56 df-f 5574 . . . . . . . . . . . 12  |-  ( (coeff `  a ) : NN0 --> (
-u A ... A
)  <->  ( (coeff `  a )  Fn  NN0  /\ 
ran  (coeff `  a )  C_  ( -u A ... A ) ) )
5738, 55, 56sylanbrc 662 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  (coeff `  a
) : NN0 --> ( -u A ... A ) )
58 elfznn0 11775 . . . . . . . . . . . 12  |-  ( a  e.  ( 0 ... A )  ->  a  e.  NN0 )
5958ssriv 3493 . . . . . . . . . . 11  |-  ( 0 ... A )  C_  NN0
60 fssres 5733 . . . . . . . . . . 11  |-  ( ( (coeff `  a ) : NN0 --> ( -u A ... A )  /\  (
0 ... A )  C_  NN0 )  ->  ( (coeff `  a )  |`  (
0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) )
6157, 59, 60sylancl 660 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  ( (coeff `  a )  |`  (
0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) )
62 ovex 6298 . . . . . . . . . . 11  |-  ( -u A ... A )  e. 
_V
63 ovex 6298 . . . . . . . . . . 11  |-  ( 0 ... A )  e. 
_V
6462, 63elmap 7440 . . . . . . . . . 10  |-  ( ( (coeff `  a )  |`  ( 0 ... A
) )  e.  ( ( -u A ... A )  ^m  (
0 ... A ) )  <-> 
( (coeff `  a
)  |`  ( 0 ... A ) ) : ( 0 ... A
) --> ( -u A ... A ) )
6561, 64sylibr 212 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  ( (coeff `  a )  |`  (
0 ... A ) )  e.  ( ( -u A ... A )  ^m  ( 0 ... A
) ) )
6665ex 432 . . . . . . . 8  |-  ( A  e.  NN0  ->  ( ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  (
(coeff `  a ) `  e ) )  <_  A )  ->  (
(coeff `  a )  |`  ( 0 ... A
) )  e.  ( ( -u A ... A )  ^m  (
0 ... A ) ) ) )
6731, 66syl5 32 . . . . . . 7  |-  ( A  e.  NN0  ->  ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
(coeff `  a )  |`  ( 0 ... A
) )  e.  ( ( -u A ... A )  ^m  (
0 ... A ) ) ) )
68 simp2 995 . . . . . . . . . 10  |-  ( ( a  =/=  0p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
)  ->  (deg `  a
)  <_  A )
6968anim2i 567 . . . . . . . . 9  |-  ( ( a  e.  (Poly `  ZZ )  /\  (
a  =/=  0p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) )  ->  (
a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
) )
7028, 69sylbi 195 . . . . . . . 8  |-  ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
) )
71 neeq1 2735 . . . . . . . . . . 11  |-  ( d  =  b  ->  (
d  =/=  0p  <-> 
b  =/=  0p ) )
72 fveq2 5848 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (deg `  d )  =  (deg
`  b ) )
7372breq1d 4449 . . . . . . . . . . 11  |-  ( d  =  b  ->  (
(deg `  d )  <_  A  <->  (deg `  b )  <_  A ) )
74 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( d  =  b  ->  (coeff `  d )  =  (coeff `  b ) )
7574fveq1d 5850 . . . . . . . . . . . . . 14  |-  ( d  =  b  ->  (
(coeff `  d ) `  e )  =  ( (coeff `  b ) `  e ) )
7675fveq2d 5852 . . . . . . . . . . . . 13  |-  ( d  =  b  ->  ( abs `  ( (coeff `  d ) `  e
) )  =  ( abs `  ( (coeff `  b ) `  e
) ) )
7776breq1d 4449 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_  A 
<->  ( abs `  (
(coeff `  b ) `  e ) )  <_  A ) )
7877ralbidv 2893 . . . . . . . . . . 11  |-  ( d  =  b  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A  <->  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
) )
7971, 73, 783anbi123d 1297 . . . . . . . . . 10  |-  ( d  =  b  ->  (
( d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
)  <->  ( b  =/=  0p  /\  (deg `  b )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
) ) )
8079elrab 3254 . . . . . . . . 9  |-  ( b  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  <->  ( b  e.  (Poly `  ZZ )  /\  ( b  =/=  0p  /\  (deg `  b
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
) ) )
81 simp2 995 . . . . . . . . . 10  |-  ( ( b  =/=  0p  /\  (deg `  b
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
)  ->  (deg `  b
)  <_  A )
8281anim2i 567 . . . . . . . . 9  |-  ( ( b  e.  (Poly `  ZZ )  /\  (
b  =/=  0p  /\  (deg `  b
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
) )  ->  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )
8380, 82sylbi 195 . . . . . . . 8  |-  ( b  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )
84 simplll 757 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  a  e.  (Poly `  ZZ ) )
85 plyf 22764 . . . . . . . . . . . . 13  |-  ( a  e.  (Poly `  ZZ )  ->  a : CC --> CC )
86 ffn 5713 . . . . . . . . . . . . 13  |-  ( a : CC --> CC  ->  a  Fn  CC )
8784, 85, 863syl 20 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  a  Fn  CC )
88 simplrl 759 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  b  e.  (Poly `  ZZ ) )
89 plyf 22764 . . . . . . . . . . . . 13  |-  ( b  e.  (Poly `  ZZ )  ->  b : CC --> CC )
90 ffn 5713 . . . . . . . . . . . . 13  |-  ( b : CC --> CC  ->  b  Fn  CC )
9188, 89, 903syl 20 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  b  Fn  CC )
92 simplrr 760 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( (coeff `  a )  |`  (
0 ... A ) )  =  ( (coeff `  b )  |`  (
0 ... A ) ) )
9392adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) )
9493fveq1d 5850 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) ) `  d )  =  ( ( (coeff `  b
)  |`  ( 0 ... A ) ) `  d ) )
95 fvres 5862 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 0 ... A )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) ) `  d )  =  ( (coeff `  a ) `  d ) )
9695adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) ) `  d )  =  ( (coeff `  a ) `  d ) )
97 fvres 5862 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 0 ... A )  ->  (
( (coeff `  b
)  |`  ( 0 ... A ) ) `  d )  =  ( (coeff `  b ) `  d ) )
9897adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
( (coeff `  b
)  |`  ( 0 ... A ) ) `  d )  =  ( (coeff `  b ) `  d ) )
9994, 96, 983eqtr3d 2503 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
(coeff `  a ) `  d )  =  ( (coeff `  b ) `  d ) )
10099oveq1d 6285 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
( (coeff `  a
) `  d )  x.  ( c ^ d
) )  =  ( ( (coeff `  b
) `  d )  x.  ( c ^ d
) ) )
101100sumeq2dv 13610 . . . . . . . . . . . . 13  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  a ) `  d
)  x.  ( c ^ d ) )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  b ) `  d
)  x.  ( c ^ d ) ) )
102 simp-4l 765 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  a  e.  (Poly `  ZZ ) )
103 simp-4r 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  (deg `  a
)  <_  A )
104 dgrcl 22799 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  (Poly `  ZZ )  ->  (deg `  a
)  e.  NN0 )
105 nn0z 10883 . . . . . . . . . . . . . . . . 17  |-  ( (deg
`  a )  e. 
NN0  ->  (deg `  a
)  e.  ZZ )
106102, 104, 1053syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  (deg `  a
)  e.  ZZ )
107 simplrl 759 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  A  e.  NN0 )
108107nn0zd 10963 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  A  e.  ZZ )
109 eluz 11095 . . . . . . . . . . . . . . . 16  |-  ( ( (deg `  a )  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  ( ZZ>= `  (deg `  a ) )  <-> 
(deg `  a )  <_  A ) )
110106, 108, 109syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( A  e.  ( ZZ>= `  (deg `  a
) )  <->  (deg `  a
)  <_  A )
)
111103, 110mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  A  e.  (
ZZ>= `  (deg `  a
) ) )
112 simpr 459 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  c  e.  CC )
113 eqid 2454 . . . . . . . . . . . . . . 15  |-  (deg `  a )  =  (deg
`  a )
11433, 113coeid3 22806 . . . . . . . . . . . . . 14  |-  ( ( a  e.  (Poly `  ZZ )  /\  A  e.  ( ZZ>= `  (deg `  a
) )  /\  c  e.  CC )  ->  (
a `  c )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  a ) `  d
)  x.  ( c ^ d ) ) )
115102, 111, 112, 114syl3anc 1226 . . . . . . . . . . . . 13  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( a `  c )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  a
) `  d )  x.  ( c ^ d
) ) )
116 simp1rl 1059 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) )  /\  c  e.  CC )  ->  b  e.  (Poly `  ZZ ) )
1171163expa 1194 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  b  e.  (Poly `  ZZ ) )
118 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  (deg `  b
)  <_  A )
119118adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  (deg `  b
)  <_  A )
120 dgrcl 22799 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  (Poly `  ZZ )  ->  (deg `  b
)  e.  NN0 )
121 nn0z 10883 . . . . . . . . . . . . . . . . 17  |-  ( (deg
`  b )  e. 
NN0  ->  (deg `  b
)  e.  ZZ )
122117, 120, 1213syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  (deg `  b
)  e.  ZZ )
123 eluz 11095 . . . . . . . . . . . . . . . 16  |-  ( ( (deg `  b )  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  ( ZZ>= `  (deg `  b ) )  <-> 
(deg `  b )  <_  A ) )
124122, 108, 123syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( A  e.  ( ZZ>= `  (deg `  b
) )  <->  (deg `  b
)  <_  A )
)
125119, 124mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  A  e.  (
ZZ>= `  (deg `  b
) ) )
126 eqid 2454 . . . . . . . . . . . . . . 15  |-  (coeff `  b )  =  (coeff `  b )
127 eqid 2454 . . . . . . . . . . . . . . 15  |-  (deg `  b )  =  (deg
`  b )
128126, 127coeid3 22806 . . . . . . . . . . . . . 14  |-  ( ( b  e.  (Poly `  ZZ )  /\  A  e.  ( ZZ>= `  (deg `  b
) )  /\  c  e.  CC )  ->  (
b `  c )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  b ) `  d
)  x.  ( c ^ d ) ) )
129117, 125, 112, 128syl3anc 1226 . . . . . . . . . . . . 13  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( b `  c )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  b
) `  d )  x.  ( c ^ d
) ) )
130101, 115, 1293eqtr4d 2505 . . . . . . . . . . . 12  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( a `  c )  =  ( b `  c ) )
13187, 91, 130eqfnfvd 5960 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  a  =  b )
132131expr 613 . . . . . . . . . 10  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  A  e.  NN0 )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) )  -> 
a  =  b ) )
133 fveq2 5848 . . . . . . . . . . 11  |-  ( a  =  b  ->  (coeff `  a )  =  (coeff `  b ) )
134133reseq1d 5261 . . . . . . . . . 10  |-  ( a  =  b  ->  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) )
135132, 134impbid1 203 . . . . . . . . 9  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  A  e.  NN0 )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) )  <->  a  =  b ) )
136135expcom 433 . . . . . . . 8  |-  ( A  e.  NN0  ->  ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  -> 
( ( (coeff `  a )  |`  (
0 ... A ) )  =  ( (coeff `  b )  |`  (
0 ... A ) )  <-> 
a  =  b ) ) )
13770, 83, 136syl2ani 654 . . . . . . 7  |-  ( A  e.  NN0  ->  ( ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  /\  b  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) } )  -> 
( ( (coeff `  a )  |`  (
0 ... A ) )  =  ( (coeff `  b )  |`  (
0 ... A ) )  <-> 
a  =  b ) ) )
13867, 137dom2d 7549 . . . . . 6  |-  ( A  e.  NN0  ->  ( ( ( -u A ... A )  ^m  (
0 ... A ) )  e.  _V  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ~<_  ( (
-u A ... A
)  ^m  ( 0 ... A ) ) ) )
13918, 138mpi 17 . . . . 5  |-  ( A  e.  NN0  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ~<_  ( (
-u A ... A
)  ^m  ( 0 ... A ) ) )
140 domfi 7734 . . . . 5  |-  ( ( ( ( -u A ... A )  ^m  (
0 ... A ) )  e.  Fin  /\  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ~<_  ( (
-u A ... A
)  ^m  ( 0 ... A ) ) )  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  e.  Fin )
14117, 139, 140syl2anc 659 . . . 4  |-  ( A  e.  NN0  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  e.  Fin )
142 neeq1 2735 . . . . . . . . 9  |-  ( d  =  c  ->  (
d  =/=  0p  <-> 
c  =/=  0p ) )
143 fveq2 5848 . . . . . . . . . 10  |-  ( d  =  c  ->  (deg `  d )  =  (deg
`  c ) )
144143breq1d 4449 . . . . . . . . 9  |-  ( d  =  c  ->  (
(deg `  d )  <_  A  <->  (deg `  c )  <_  A ) )
145 fveq2 5848 . . . . . . . . . . . . 13  |-  ( d  =  c  ->  (coeff `  d )  =  (coeff `  c ) )
146145fveq1d 5850 . . . . . . . . . . . 12  |-  ( d  =  c  ->  (
(coeff `  d ) `  e )  =  ( (coeff `  c ) `  e ) )
147146fveq2d 5852 . . . . . . . . . . 11  |-  ( d  =  c  ->  ( abs `  ( (coeff `  d ) `  e
) )  =  ( abs `  ( (coeff `  c ) `  e
) ) )
148147breq1d 4449 . . . . . . . . . 10  |-  ( d  =  c  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_  A 
<->  ( abs `  (
(coeff `  c ) `  e ) )  <_  A ) )
149148ralbidv 2893 . . . . . . . . 9  |-  ( d  =  c  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A  <->  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
) )
150142, 144, 1493anbi123d 1297 . . . . . . . 8  |-  ( d  =  c  ->  (
( d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
)  <->  ( c  =/=  0p  /\  (deg `  c )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
) ) )
151150elrab 3254 . . . . . . 7  |-  ( c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  <->  ( c  e.  (Poly `  ZZ )  /\  ( c  =/=  0p  /\  (deg `  c
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
) ) )
152 simp1 994 . . . . . . . 8  |-  ( ( c  =/=  0p  /\  (deg `  c
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
)  ->  c  =/=  0p )
153152anim2i 567 . . . . . . 7  |-  ( ( c  e.  (Poly `  ZZ )  /\  (
c  =/=  0p  /\  (deg `  c
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
) )  ->  (
c  e.  (Poly `  ZZ )  /\  c  =/=  0p ) )
154151, 153sylbi 195 . . . . . 6  |-  ( c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
c  e.  (Poly `  ZZ )  /\  c  =/=  0p ) )
155 plyf 22764 . . . . . . . . . . . . 13  |-  ( c  e.  (Poly `  ZZ )  ->  c : CC --> CC )
156 ffn 5713 . . . . . . . . . . . . 13  |-  ( c : CC --> CC  ->  c  Fn  CC )
157155, 156syl 16 . . . . . . . . . . . 12  |-  ( c  e.  (Poly `  ZZ )  ->  c  Fn  CC )
158157adantr 463 . . . . . . . . . . 11  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0p )  -> 
c  Fn  CC )
159 fniniseg 5984 . . . . . . . . . . 11  |-  ( c  Fn  CC  ->  (
a  e.  ( `' c " { 0 } )  <->  ( a  e.  CC  /\  ( c `
 a )  =  0 ) ) )
160158, 159syl 16 . . . . . . . . . 10  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0p )  -> 
( a  e.  ( `' c " {
0 } )  <->  ( a  e.  CC  /\  ( c `
 a )  =  0 ) ) )
161 fveq2 5848 . . . . . . . . . . . 12  |-  ( b  =  a  ->  (
c `  b )  =  ( c `  a ) )
162161eqeq1d 2456 . . . . . . . . . . 11  |-  ( b  =  a  ->  (
( c `  b
)  =  0  <->  (
c `  a )  =  0 ) )
163162elrab 3254 . . . . . . . . . 10  |-  ( a  e.  { b  e.  CC  |  ( c `
 b )  =  0 }  <->  ( a  e.  CC  /\  ( c `
 a )  =  0 ) )
164160, 163syl6rbbr 264 . . . . . . . . 9  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0p )  -> 
( a  e.  {
b  e.  CC  | 
( c `  b
)  =  0 }  <-> 
a  e.  ( `' c " { 0 } ) ) )
165164eqrdv 2451 . . . . . . . 8  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0p )  ->  { b  e.  CC  |  ( c `  b )  =  0 }  =  ( `' c " { 0 } ) )
166 eqid 2454 . . . . . . . . . 10  |-  ( `' c " { 0 } )  =  ( `' c " {
0 } )
167166fta1 22873 . . . . . . . . 9  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0p )  -> 
( ( `' c
" { 0 } )  e.  Fin  /\  ( # `  ( `' c " { 0 } ) )  <_ 
(deg `  c )
) )
168167simpld 457 . . . . . . . 8  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0p )  -> 
( `' c " { 0 } )  e.  Fin )
169165, 168eqeltrd 2542 . . . . . . 7  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0p )  ->  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
170169a1i 11 . . . . . 6  |-  ( A  e.  NN0  ->  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0p )  ->  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
)
171154, 170syl5 32 . . . . 5  |-  ( A  e.  NN0  ->  ( c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin ) )
172171ralrimiv 2866 . . . 4  |-  ( A  e.  NN0  ->  A. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
173 iunfi 7800 . . . 4  |-  ( ( { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  e.  Fin  /\ 
A. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )  ->  U_ c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
174141, 172, 173syl2anc 659 . . 3  |-  ( A  e.  NN0  ->  U_ c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
17512, 174syl5eqelr 2547 . 2  |-  ( A  e.  NN0  ->  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 }  e.  Fin )
17611, 175eqeltrd 2542 1  |-  ( A  e.  NN0  ->  ( H `
 A )  e. 
Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808   _Vcvv 3106    C_ wss 3461   {csn 4016   U_ciun 4315   class class class wbr 4439    |-> cmpt 4497   `'ccnv 4987   ran crn 4989    |` cres 4990   "cima 4991    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270    ^m cmap 7412    ~<_ cdom 7507   Fincfn 7509   CCcc 9479   RRcr 9480   0cc0 9481    x. cmul 9486    <_ cle 9618   -ucneg 9797   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   ...cfz 11675   ^cexp 12151   #chash 12390   abscabs 13152   sum_csu 13593   0pc0p 22245  Polycply 22750  coeffccoe 22752  degcdgr 22753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12093  df-exp 12152  df-hash 12391  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-clim 13396  df-rlim 13397  df-sum 13594  df-0p 22246  df-ply 22754  df-idp 22755  df-coe 22756  df-dgr 22757  df-quot 22856
This theorem is referenced by:  aannenlem3  22895
  Copyright terms: Public domain W3C validator