MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem2 Structured version   Visualization version   GIF version

Theorem aannenlem2 23888
Description: Lemma for aannen 23890. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem2 𝔸 = ran 𝐻
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem2
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1056 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → 𝑔 ∈ ℂ)
2 eldifi 3694 . . . . . . . . . . . . . 14 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ∈ (Poly‘ℤ))
32adantr 480 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ∈ (Poly‘ℤ))
433adant2 1073 . . . . . . . . . . . 12 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∈ (Poly‘ℤ))
5 eldifsni 4261 . . . . . . . . . . . . . . 15 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ≠ 0𝑝)
65adantr 480 . . . . . . . . . . . . . 14 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ≠ 0𝑝)
7 0nn0 11184 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
8 dgrcl 23793 . . . . . . . . . . . . . . . . . . 19 ( ∈ (Poly‘ℤ) → (deg‘) ∈ ℕ0)
93, 8syl 17 . . . . . . . . . . . . . . . . . 18 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (deg‘) ∈ ℕ0)
10 prssi 4293 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℕ0 ∧ (deg‘) ∈ ℕ0) → {0, (deg‘)} ⊆ ℕ0)
117, 9, 10sylancr 694 . . . . . . . . . . . . . . . . 17 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → {0, (deg‘)} ⊆ ℕ0)
12 ssrab2 3650 . . . . . . . . . . . . . . . . . 18 {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ ℕ0
1312a1i 11 . . . . . . . . . . . . . . . . 17 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ ℕ0)
1411, 13unssd 3751 . . . . . . . . . . . . . . . 16 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℕ0)
15 nn0ssre 11173 . . . . . . . . . . . . . . . . 17 0 ⊆ ℝ
16 ressxr 9962 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℝ*
1715, 16sstri 3577 . . . . . . . . . . . . . . . 16 0 ⊆ ℝ*
1814, 17syl6ss 3580 . . . . . . . . . . . . . . 15 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*)
19 fvex 6113 . . . . . . . . . . . . . . . . 17 (deg‘) ∈ V
2019prid2 4242 . . . . . . . . . . . . . . . 16 (deg‘) ∈ {0, (deg‘)}
21 elun1 3742 . . . . . . . . . . . . . . . 16 ((deg‘) ∈ {0, (deg‘)} → (deg‘) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
2220, 21ax-mp 5 . . . . . . . . . . . . . . 15 (deg‘) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})
23 supxrub 12026 . . . . . . . . . . . . . . 15 ((({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ* ∧ (deg‘) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})) → (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
2418, 22, 23sylancl 693 . . . . . . . . . . . . . 14 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
2518adantr 480 . . . . . . . . . . . . . . . 16 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*)
26 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (((coeff‘)‘𝑒) = 0 → (abs‘((coeff‘)‘𝑒)) = (abs‘0))
27 abs0 13873 . . . . . . . . . . . . . . . . . . . 20 (abs‘0) = 0
2826, 27syl6eq 2660 . . . . . . . . . . . . . . . . . . 19 (((coeff‘)‘𝑒) = 0 → (abs‘((coeff‘)‘𝑒)) = 0)
29 c0ex 9913 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ V
3029prid1 4241 . . . . . . . . . . . . . . . . . . . 20 0 ∈ {0, (deg‘)}
31 elun1 3742 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {0, (deg‘)} → 0 ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . . . 19 0 ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})
3328, 32syl6eqel 2696 . . . . . . . . . . . . . . . . . 18 (((coeff‘)‘𝑒) = 0 → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
3433adantl 481 . . . . . . . . . . . . . . . . 17 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) = 0) → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
35 0z 11265 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℤ
36 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . 24 (coeff‘) = (coeff‘)
3736coef2 23791 . . . . . . . . . . . . . . . . . . . . . . 23 (( ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘):ℕ0⟶ℤ)
383, 35, 37sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (coeff‘):ℕ0⟶ℤ)
3938ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . 21 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → ((coeff‘)‘𝑒) ∈ ℤ)
40 nn0abscl 13900 . . . . . . . . . . . . . . . . . . . . 21 (((coeff‘)‘𝑒) ∈ ℤ → (abs‘((coeff‘)‘𝑒)) ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . . . . . . . . . . . 20 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → (abs‘((coeff‘)‘𝑒)) ∈ ℕ0)
4241adantr 480 . . . . . . . . . . . . . . . . . . 19 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (abs‘((coeff‘)‘𝑒)) ∈ ℕ0)
43 simplr 788 . . . . . . . . . . . . . . . . . . . . 21 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ∈ ℕ0)
449ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (deg‘) ∈ ℕ0)
453ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . 22 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → ∈ (Poly‘ℤ))
46 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → ((coeff‘)‘𝑒) ≠ 0)
47 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (deg‘) = (deg‘)
4836, 47dgrub 23794 . . . . . . . . . . . . . . . . . . . . . 22 (( ∈ (Poly‘ℤ) ∧ 𝑒 ∈ ℕ0 ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ≤ (deg‘))
4945, 43, 46, 48syl3anc 1318 . . . . . . . . . . . . . . . . . . . . 21 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ≤ (deg‘))
50 elfz2nn0 12300 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 ∈ (0...(deg‘)) ↔ (𝑒 ∈ ℕ0 ∧ (deg‘) ∈ ℕ0𝑒 ≤ (deg‘)))
5143, 44, 49, 50syl3anbrc 1239 . . . . . . . . . . . . . . . . . . . 20 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ∈ (0...(deg‘)))
52 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑒))
53 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑒 → ((coeff‘)‘𝑖) = ((coeff‘)‘𝑒))
5453fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑒 → (abs‘((coeff‘)‘𝑖)) = (abs‘((coeff‘)‘𝑒)))
5554eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑒 → ((abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖)) ↔ (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑒))))
5655rspcev 3282 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 ∈ (0...(deg‘)) ∧ (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑒))) → ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖)))
5751, 52, 56sylancl 693 . . . . . . . . . . . . . . . . . . 19 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖)))
58 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (abs‘((coeff‘)‘𝑒)) → (𝑔 = (abs‘((coeff‘)‘𝑖)) ↔ (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖))))
5958rexbidv 3034 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (abs‘((coeff‘)‘𝑒)) → (∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖)) ↔ ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖))))
6059elrab 3331 . . . . . . . . . . . . . . . . . . 19 ((abs‘((coeff‘)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ↔ ((abs‘((coeff‘)‘𝑒)) ∈ ℕ0 ∧ ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖))))
6142, 57, 60sylanbrc 695 . . . . . . . . . . . . . . . . . 18 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (abs‘((coeff‘)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})
62 elun2 3743 . . . . . . . . . . . . . . . . . 18 ((abs‘((coeff‘)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
6361, 62syl 17 . . . . . . . . . . . . . . . . 17 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
6434, 63pm2.61dane 2869 . . . . . . . . . . . . . . . 16 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
65 supxrub 12026 . . . . . . . . . . . . . . . 16 ((({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ* ∧ (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})) → (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
6625, 64, 65syl2anc 691 . . . . . . . . . . . . . . 15 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
6766ralrimiva 2949 . . . . . . . . . . . . . 14 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
686, 24, 673jca 1235 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
69683adant2 1073 . . . . . . . . . . . 12 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
70 neeq1 2844 . . . . . . . . . . . . . 14 (𝑑 = → (𝑑 ≠ 0𝑝 ≠ 0𝑝))
71 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑑 = → (deg‘𝑑) = (deg‘))
7271breq1d 4593 . . . . . . . . . . . . . 14 (𝑑 = → ((deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ↔ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
73 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑑 = → (coeff‘𝑑) = (coeff‘))
7473fveq1d 6105 . . . . . . . . . . . . . . . . 17 (𝑑 = → ((coeff‘𝑑)‘𝑒) = ((coeff‘)‘𝑒))
7574fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑑 = → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘)‘𝑒)))
7675breq1d 4593 . . . . . . . . . . . . . . 15 (𝑑 = → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ↔ (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
7776ralbidv 2969 . . . . . . . . . . . . . 14 (𝑑 = → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
7870, 72, 773anbi123d 1391 . . . . . . . . . . . . 13 (𝑑 = → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )) ↔ ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))))
7978elrab 3331 . . . . . . . . . . . 12 ( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} ↔ ( ∈ (Poly‘ℤ) ∧ ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))))
804, 69, 79sylanbrc 695 . . . . . . . . . . 11 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))})
81 simp2 1055 . . . . . . . . . . 11 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → (𝑔) = 0)
82 fveq1 6102 . . . . . . . . . . . . 13 (𝑐 = → (𝑐𝑔) = (𝑔))
8382eqeq1d 2612 . . . . . . . . . . . 12 (𝑐 = → ((𝑐𝑔) = 0 ↔ (𝑔) = 0))
8483rspcev 3282 . . . . . . . . . . 11 (( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} ∧ (𝑔) = 0) → ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0)
8580, 81, 84syl2anc 691 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0)
86 fveq2 6103 . . . . . . . . . . . . 13 (𝑏 = 𝑔 → (𝑐𝑏) = (𝑐𝑔))
8786eqeq1d 2612 . . . . . . . . . . . 12 (𝑏 = 𝑔 → ((𝑐𝑏) = 0 ↔ (𝑐𝑔) = 0))
8887rexbidv 3034 . . . . . . . . . . 11 (𝑏 = 𝑔 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0))
8988elrab 3331 . . . . . . . . . 10 (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ↔ (𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0))
901, 85, 89sylanbrc 695 . . . . . . . . 9 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → 𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0})
91 prfi 8120 . . . . . . . . . . . . . . 15 {0, (deg‘)} ∈ Fin
92 fzfi 12633 . . . . . . . . . . . . . . . . 17 (0...(deg‘)) ∈ Fin
93 abrexfi 8149 . . . . . . . . . . . . . . . . 17 ((0...(deg‘)) ∈ Fin → {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin)
9492, 93ax-mp 5 . . . . . . . . . . . . . . . 16 {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin
95 rabssab 3652 . . . . . . . . . . . . . . . 16 {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}
96 ssfi 8065 . . . . . . . . . . . . . . . 16 (({𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin ∧ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) → {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin)
9794, 95, 96mp2an 704 . . . . . . . . . . . . . . 15 {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin
98 unfi 8112 . . . . . . . . . . . . . . 15 (({0, (deg‘)} ∈ Fin ∧ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin)
9991, 97, 98mp2an 704 . . . . . . . . . . . . . 14 ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin
10099a1i 11 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin)
10122ne0ii 3882 . . . . . . . . . . . . . 14 ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅
102101a1i 11 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅)
103 xrltso 11850 . . . . . . . . . . . . . 14 < Or ℝ*
104 fisupcl 8258 . . . . . . . . . . . . . 14 (( < Or ℝ* ∧ (({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅ ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*)) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
105103, 104mpan 702 . . . . . . . . . . . . 13 ((({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅ ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
106100, 102, 18, 105syl3anc 1318 . . . . . . . . . . . 12 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
10714, 106sseldd 3569 . . . . . . . . . . 11 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ℕ0)
1081073adant2 1073 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ℕ0)
109 eqidd 2611 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0})
110 breq2 4587 . . . . . . . . . . . . . . . 16 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
111 breq2 4587 . . . . . . . . . . . . . . . . 17 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
112111ralbidv 2969 . . . . . . . . . . . . . . . 16 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
113110, 1123anbi23d 1394 . . . . . . . . . . . . . . 15 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))))
114113rabbidv 3164 . . . . . . . . . . . . . 14 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} = {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))})
115114rexeqdv 3122 . . . . . . . . . . . . 13 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0))
116115rabbidv 3164 . . . . . . . . . . . 12 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0})
117116eqeq2d 2620 . . . . . . . . . . 11 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ({𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0}))
118117rspcev 3282 . . . . . . . . . 10 ((sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ℕ0 ∧ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0}) → ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
119108, 109, 118syl2anc 691 . . . . . . . . 9 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
120 cnex 9896 . . . . . . . . . . 11 ℂ ∈ V
121120rabex 4740 . . . . . . . . . 10 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ∈ V
122 eleq2 2677 . . . . . . . . . . 11 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → (𝑔𝑓𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0}))
123 eqeq1 2614 . . . . . . . . . . . 12 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
124123rexbidv 3034 . . . . . . . . . . 11 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → (∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
125122, 124anbi12d 743 . . . . . . . . . 10 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → ((𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) ↔ (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ∧ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})))
126121, 125spcev 3273 . . . . . . . . 9 ((𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ∧ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
12790, 119, 126syl2anc 691 . . . . . . . 8 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
1281273exp 1256 . . . . . . 7 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ((𝑔) = 0 → (𝑔 ∈ ℂ → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))))
129128rexlimiv 3009 . . . . . 6 (∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0 → (𝑔 ∈ ℂ → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})))
130129impcom 445 . . . . 5 ((𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0) → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
131 eleq2 2677 . . . . . . . . 9 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔𝑓𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
13287rexbidv 3034 . . . . . . . . . . 11 (𝑏 = 𝑔 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0))
133132elrab 3331 . . . . . . . . . 10 (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ (𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0))
134 simp1 1054 . . . . . . . . . . . . . . 15 (( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎) → ≠ 0𝑝)
135134anim2i 591 . . . . . . . . . . . . . 14 (( ∈ (Poly‘ℤ) ∧ ( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎)) → ( ∈ (Poly‘ℤ) ∧ ≠ 0𝑝))
13671breq1d 4593 . . . . . . . . . . . . . . . 16 (𝑑 = → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘) ≤ 𝑎))
13775breq1d 4593 . . . . . . . . . . . . . . . . 17 (𝑑 = → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘)‘𝑒)) ≤ 𝑎))
138137ralbidv 2969 . . . . . . . . . . . . . . . 16 (𝑑 = → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎))
13970, 136, 1383anbi123d 1391 . . . . . . . . . . . . . . 15 (𝑑 = → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ ( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎)))
140139elrab 3331 . . . . . . . . . . . . . 14 ( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ↔ ( ∈ (Poly‘ℤ) ∧ ( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎)))
141 eldifsn 4260 . . . . . . . . . . . . . 14 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ( ∈ (Poly‘ℤ) ∧ ≠ 0𝑝))
142135, 140, 1413imtr4i 280 . . . . . . . . . . . . 13 ( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} → ∈ ((Poly‘ℤ) ∖ {0𝑝}))
143142ssriv 3572 . . . . . . . . . . . 12 {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖ {0𝑝})
144 ssrexv 3630 . . . . . . . . . . . . 13 ({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖ {0𝑝}) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0 → ∃𝑐 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑐𝑔) = 0))
14583cbvrexv 3148 . . . . . . . . . . . . 13 (∃𝑐 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑐𝑔) = 0 ↔ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)
146144, 145syl6ib 240 . . . . . . . . . . . 12 ({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖ {0𝑝}) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0 → ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
147143, 146ax-mp 5 . . . . . . . . . . 11 (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0 → ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)
148147anim2i 591 . . . . . . . . . 10 ((𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0) → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
149133, 148sylbi 206 . . . . . . . . 9 (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
150131, 149syl6bi 242 . . . . . . . 8 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔𝑓 → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)))
151150rexlimivw 3011 . . . . . . 7 (∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔𝑓 → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)))
152151impcom 445 . . . . . 6 ((𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
153152exlimiv 1845 . . . . 5 (∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
154130, 153impbii 198 . . . 4 ((𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0) ↔ ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
155 elaa 23875 . . . 4 (𝑔 ∈ 𝔸 ↔ (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
156 eluniab 4383 . . . 4 (𝑔 {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}} ↔ ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
157154, 155, 1563bitr4i 291 . . 3 (𝑔 ∈ 𝔸 ↔ 𝑔 {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}})
158157eqriv 2607 . 2 𝔸 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}}
159 aannenlem.a . . . 4 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
160159rnmpt 5292 . . 3 ran 𝐻 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}}
161160unieqi 4381 . 2 ran 𝐻 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}}
162158, 161eqtr4i 2635 1 𝔸 = ran 𝐻
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  cdif 3537  cun 3538  wss 3540  c0 3874  {csn 4125  {cpr 4127   cuni 4372   class class class wbr 4583  cmpt 4643   Or wor 4958  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  cc 9813  cr 9814  0cc0 9815  *cxr 9952   < clt 9953  cle 9954  0cn0 11169  cz 11254  ...cfz 12197  abscabs 13822  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747  𝔸caa 23873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751  df-aa 23874
This theorem is referenced by:  aannenlem3  23889
  Copyright terms: Public domain W3C validator