MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeid3 Structured version   Visualization version   GIF version

Theorem coeid3 23800
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
coeid3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑆,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑋

Proof of Theorem coeid3
StepHypRef Expression
1 dgrub.1 . . . 4 𝐴 = (coeff‘𝐹)
2 dgrub.2 . . . 4 𝑁 = (deg‘𝐹)
31, 2coeid2 23799 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)))
433adant2 1073 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)))
5 fzss2 12252 . . . 4 (𝑀 ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...𝑀))
653ad2ant2 1076 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀))
7 elfznn0 12302 . . . 4 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
81coef3 23792 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
983ad2ant1 1075 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
109ffvelrnda 6267 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
11 expcl 12740 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
12113ad2antl3 1218 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
1310, 12mulcld 9939 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑋𝑘)) ∈ ℂ)
147, 13sylan2 490 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑋𝑘)) ∈ ℂ)
15 eldifn 3695 . . . . . . 7 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
1615adantl 481 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
17 simpl1 1057 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝐹 ∈ (Poly‘𝑆))
18 eldifi 3694 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀))
19 elfzuz 12209 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ‘0))
2018, 19syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (ℤ‘0))
2120adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈ (ℤ‘0))
22 nn0uz 11598 . . . . . . . . . 10 0 = (ℤ‘0)
2321, 22syl6eleqr 2699 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑘 ∈ ℕ0)
241, 2dgrub 23794 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
25243expia 1259 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
2617, 23, 25syl2anc 691 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
27 simpl2 1058 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑀 ∈ (ℤ𝑁))
28 eluzel2 11568 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
2927, 28syl 17 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → 𝑁 ∈ ℤ)
30 elfz5 12205 . . . . . . . . 9 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
3121, 29, 30syl2anc 691 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
3226, 31sylibrd 248 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
3332necon1bd 2800 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴𝑘) = 0))
3416, 33mpd 15 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴𝑘) = 0)
3534oveq1d 6564 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑋𝑘)) = (0 · (𝑋𝑘)))
36 elfznn0 12302 . . . . . . 7 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
3718, 36syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
3837, 12sylan2 490 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑋𝑘) ∈ ℂ)
3938mul02d 10113 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑋𝑘)) = 0)
4035, 39eqtrd 2644 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑋𝑘)) = 0)
41 fzfid 12634 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (0...𝑀) ∈ Fin)
426, 14, 40, 41fsumss 14303 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
434, 42eqtrd 2644 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cdif 3537  wss 3540   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   · cmul 9820  cle 9954  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  Σcsu 14264  Polycply 23744  coeffccoe 23746  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  dvply2g  23844  aannenlem1  23887
  Copyright terms: Public domain W3C validator