MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumss Structured version   Visualization version   GIF version

Theorem fsumss 14303
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
sumss.1 (𝜑𝐴𝐵)
sumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
sumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
fsumss.4 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fsumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumss
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumss.1 . . . . 5 (𝜑𝐴𝐵)
21adantr 480 . . . 4 ((𝜑𝐵 = ∅) → 𝐴𝐵)
3 sumss.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
43adantlr 747 . . . 4 (((𝜑𝐵 = ∅) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
5 sumss.3 . . . . 5 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
65adantlr 747 . . . 4 (((𝜑𝐵 = ∅) ∧ 𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
7 simpr 476 . . . . 5 ((𝜑𝐵 = ∅) → 𝐵 = ∅)
8 0ss 3924 . . . . 5 ∅ ⊆ (ℤ‘0)
97, 8syl6eqss 3618 . . . 4 ((𝜑𝐵 = ∅) → 𝐵 ⊆ (ℤ‘0))
102, 4, 6, 9sumss 14302 . . 3 ((𝜑𝐵 = ∅) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
1110ex 449 . 2 (𝜑 → (𝐵 = ∅ → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
12 cnvimass 5404 . . . . . . . . 9 (𝑓𝐴) ⊆ dom 𝑓
13 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)
14 f1of 6050 . . . . . . . . . . 11 (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑓:(1...(#‘𝐵))⟶𝐵)
1513, 14syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(#‘𝐵))⟶𝐵)
16 fdm 5964 . . . . . . . . . 10 (𝑓:(1...(#‘𝐵))⟶𝐵 → dom 𝑓 = (1...(#‘𝐵)))
1715, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → dom 𝑓 = (1...(#‘𝐵)))
1812, 17syl5sseq 3616 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ⊆ (1...(#‘𝐵)))
19 ffn 5958 . . . . . . . . . . . . 13 (𝑓:(1...(#‘𝐵))⟶𝐵𝑓 Fn (1...(#‘𝐵)))
2015, 19syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓 Fn (1...(#‘𝐵)))
21 elpreima 6245 . . . . . . . . . . . 12 (𝑓 Fn (1...(#‘𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
2220, 21syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
2315ffvelrnda 6267 . . . . . . . . . . . . 13 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(#‘𝐵))) → (𝑓𝑛) ∈ 𝐵)
2423ex 449 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (1...(#‘𝐵)) → (𝑓𝑛) ∈ 𝐵))
2524adantrd 483 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ((𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴) → (𝑓𝑛) ∈ 𝐵))
2622, 25sylbid 229 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) → (𝑓𝑛) ∈ 𝐵))
2726imp 444 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → (𝑓𝑛) ∈ 𝐵)
283ex 449 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2928adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
30 eldif 3550 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
31 0cn 9911 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
325, 31syl6eqel 2696 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
3330, 32sylan2br 492 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
3433expr 641 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
3529, 34pm2.61d 169 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
36 eqid 2610 . . . . . . . . . . . 12 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
3735, 36fmptd 6292 . . . . . . . . . . 11 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑘𝐵𝐶):𝐵⟶ℂ)
3938ffvelrnda 6267 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ (𝑓𝑛) ∈ 𝐵) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
4027, 39syldan 486 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
41 eldifi 3694 . . . . . . . . . . . 12 (𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴)) → 𝑛 ∈ (1...(#‘𝐵)))
4241, 23sylan2 490 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ 𝐵)
43 eldifn 3695 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴)) → ¬ 𝑛 ∈ (𝑓𝐴))
4443adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ¬ 𝑛 ∈ (𝑓𝐴))
4522adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
4641adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → 𝑛 ∈ (1...(#‘𝐵)))
4746biantrurd 528 . . . . . . . . . . . . 13 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑓𝑛) ∈ 𝐴 ↔ (𝑛 ∈ (1...(#‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
4845, 47bitr4d 270 . . . . . . . . . . . 12 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑓𝑛) ∈ 𝐴))
4944, 48mtbid 313 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ¬ (𝑓𝑛) ∈ 𝐴)
5042, 49eldifd 3551 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ (𝐵𝐴))
51 difss 3699 . . . . . . . . . . . . 13 (𝐵𝐴) ⊆ 𝐵
52 resmpt 5369 . . . . . . . . . . . . 13 ((𝐵𝐴) ⊆ 𝐵 → ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶))
5351, 52ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶)
5453fveq1i 6104 . . . . . . . . . . 11 (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛))
55 fvres 6117 . . . . . . . . . . 11 ((𝑓𝑛) ∈ (𝐵𝐴) → (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
5654, 55syl5eqr 2658 . . . . . . . . . 10 ((𝑓𝑛) ∈ (𝐵𝐴) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
5750, 56syl 17 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
58 c0ex 9913 . . . . . . . . . . . . . . 15 0 ∈ V
5958elsn2 4158 . . . . . . . . . . . . . 14 (𝐶 ∈ {0} ↔ 𝐶 = 0)
605, 59sylibr 223 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ {0})
61 eqid 2610 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐵𝐴) ↦ 𝐶) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶)
6260, 61fmptd 6292 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{0})
6362ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{0})
6463, 50ffvelrnd 6268 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {0})
65 elsni 4142 . . . . . . . . . 10 (((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {0} → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 0)
6664, 65syl 17 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 0)
6757, 66eqtr3d 2646 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(#‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) = 0)
68 fzssuz 12253 . . . . . . . . 9 (1...(#‘𝐵)) ⊆ (ℤ‘1)
6968a1i 11 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (1...(#‘𝐵)) ⊆ (ℤ‘1))
7018, 40, 67, 69sumss 14302 . . . . . . 7 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)) = Σ𝑛 ∈ (1...(#‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
711ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝐴𝐵)
7271resmptd 5371 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
7372fveq1d 6105 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐴𝐶)‘𝑚))
74 fvres 6117 . . . . . . . . . . 11 (𝑚𝐴 → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
7574adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
7673, 75eqtr3d 2646 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
7776sumeq2dv 14281 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚))
78 fveq2 6103 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐵𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
79 fzfid 12634 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (1...(#‘𝐵)) ∈ Fin)
8079, 15fisuppfi 8166 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ∈ Fin)
81 f1of1 6049 . . . . . . . . . . . 12 (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑓:(1...(#‘𝐵))–1-1𝐵)
8213, 81syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(#‘𝐵))–1-1𝐵)
83 f1ores 6064 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐵))–1-1𝐵 ∧ (𝑓𝐴) ⊆ (1...(#‘𝐵))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
8482, 18, 83syl2anc 691 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
85 f1ofo 6057 . . . . . . . . . . . . 13 (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑓:(1...(#‘𝐵))–onto𝐵)
8613, 85syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(#‘𝐵))–onto𝐵)
871adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → 𝐴𝐵)
88 foimacnv 6067 . . . . . . . . . . . 12 ((𝑓:(1...(#‘𝐵))–onto𝐵𝐴𝐵) → (𝑓 “ (𝑓𝐴)) = 𝐴)
8986, 87, 88syl2anc 691 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓 “ (𝑓𝐴)) = 𝐴)
90 f1oeq3 6042 . . . . . . . . . . 11 ((𝑓 “ (𝑓𝐴)) = 𝐴 → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
9189, 90syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
9284, 91mpbid 221 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
93 fvres 6117 . . . . . . . . . 10 (𝑛 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
9493adantl 481 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
9587sselda 3568 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝑚𝐵)
9638ffvelrnda 6267 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
9795, 96syldan 486 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
9878, 80, 92, 94, 97fsumf1o 14301 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
9977, 98eqtrd 2644 . . . . . . 7 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
100 eqidd 2611 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(#‘𝐵))) → (𝑓𝑛) = (𝑓𝑛))
10178, 79, 13, 100, 96fsumf1o 14301 . . . . . . 7 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑛 ∈ (1...(#‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
10270, 99, 1013eqtr4d 2654 . . . . . 6 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
103 sumfc 14287 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶
104 sumfc 14287 . . . . . 6 Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶
105102, 103, 1043eqtr3g 2667 . . . . 5 ((𝜑 ∧ ((#‘𝐵) ∈ ℕ ∧ 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
106105expr 641 . . . 4 ((𝜑 ∧ (#‘𝐵) ∈ ℕ) → (𝑓:(1...(#‘𝐵))–1-1-onto𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
107106exlimdv 1848 . . 3 ((𝜑 ∧ (#‘𝐵) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
108107expimpd 627 . 2 (𝜑 → (((#‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto𝐵) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
109 fsumss.4 . . 3 (𝜑𝐵 ∈ Fin)
110 fz1f1o 14288 . . 3 (𝐵 ∈ Fin → (𝐵 = ∅ ∨ ((#‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)))
111109, 110syl 17 . 2 (𝜑 → (𝐵 = ∅ ∨ ((#‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐵))–1-1-onto𝐵)))
11211, 108, 111mpjaod 395 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  cdif 3537  wss 3540  c0 3874  {csn 4125  cmpt 4643  ccnv 5037  dom cdm 5038  cres 5040  cima 5041   Fn wfn 5799  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816  cn 10897  cuz 11563  ...cfz 12197  #chash 12979  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  sumss2  14304  rrxmval  22996  rrxmetlem  22998  itg1val2  23257  itg1addlem4  23272  itg1addlem5  23273  ply1termlem  23763  plyaddlem1  23773  plymullem1  23774  coeeulem  23784  coeidlem  23797  coeid3  23800  coefv0  23808  coemulhi  23814  coemulc  23815  dvply1  23843  vieta1lem2  23870  dvtaylp  23928  pserdvlem2  23986  basellem3  24609  musum  24717  muinv  24719  fsumvma  24738  chpub  24745  logexprlim  24750  dchrsum  24794  chebbnd1lem1  24958  rpvmasumlem  24976  dchrisum0fno1  25000  rplogsum  25016  indsum  29412  eulerpartlemgs2  29769  flcidc  36763  fsumsupp0  38645  elaa2lem  39126
  Copyright terms: Public domain W3C validator