MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem7 Structured version   Visualization version   GIF version

Theorem ftalem7 24605
Description: Lemma for fta 24606. Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem7.5 (𝜑𝑋 ∈ ℂ)
ftalem7.6 (𝜑 → (𝐹𝑋) ≠ 0)
Assertion
Ref Expression
ftalem7 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ftalem7
Dummy variables 𝑧 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (coeff‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
2 eqid 2610 . . . 4 (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
3 simpr 476 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
4 ftalem7.5 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
54adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑋 ∈ ℂ)
63, 5addcld 9938 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝑧 + 𝑋) ∈ ℂ)
7 cnex 9896 . . . . . . . . 9 ℂ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℂ ∈ V)
94negcld 10258 . . . . . . . . 9 (𝜑 → -𝑋 ∈ ℂ)
109adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → -𝑋 ∈ ℂ)
11 df-idp 23749 . . . . . . . . . 10 Xp = ( I ↾ ℂ)
12 mptresid 5375 . . . . . . . . . 10 (𝑧 ∈ ℂ ↦ 𝑧) = ( I ↾ ℂ)
1311, 12eqtr4i 2635 . . . . . . . . 9 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
1413a1i 11 . . . . . . . 8 (𝜑Xp = (𝑧 ∈ ℂ ↦ 𝑧))
15 fconstmpt 5085 . . . . . . . . 9 (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋)
1615a1i 11 . . . . . . . 8 (𝜑 → (ℂ × {-𝑋}) = (𝑧 ∈ ℂ ↦ -𝑋))
178, 3, 10, 14, 16offval2 6812 . . . . . . 7 (𝜑 → (Xp𝑓 − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)))
18 id 22 . . . . . . . . 9 (𝑧 ∈ ℂ → 𝑧 ∈ ℂ)
19 subneg 10209 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2018, 4, 19syl2anr 494 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑧 − -𝑋) = (𝑧 + 𝑋))
2120mpteq2dva 4672 . . . . . . 7 (𝜑 → (𝑧 ∈ ℂ ↦ (𝑧 − -𝑋)) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
2217, 21eqtrd 2644 . . . . . 6 (𝜑 → (Xp𝑓 − (ℂ × {-𝑋})) = (𝑧 ∈ ℂ ↦ (𝑧 + 𝑋)))
23 ftalem.3 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
24 plyf 23758 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
2523, 24syl 17 . . . . . . 7 (𝜑𝐹:ℂ⟶ℂ)
2625feqmptd 6159 . . . . . 6 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
27 fveq2 6103 . . . . . 6 (𝑦 = (𝑧 + 𝑋) → (𝐹𝑦) = (𝐹‘(𝑧 + 𝑋)))
286, 22, 26, 27fmptco 6303 . . . . 5 (𝜑 → (𝐹 ∘ (Xp𝑓 − (ℂ × {-𝑋}))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))))
29 plyssc 23760 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3029, 23sseldi 3566 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
31 eqid 2610 . . . . . . . . 9 (Xp𝑓 − (ℂ × {-𝑋})) = (Xp𝑓 − (ℂ × {-𝑋}))
3231plyremlem 23863 . . . . . . . 8 (-𝑋 ∈ ℂ → ((Xp𝑓 − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {-𝑋}))) = 1 ∧ ((Xp𝑓 − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
339, 32syl 17 . . . . . . 7 (𝜑 → ((Xp𝑓 − (ℂ × {-𝑋})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {-𝑋}))) = 1 ∧ ((Xp𝑓 − (ℂ × {-𝑋})) “ {0}) = {-𝑋}))
3433simp1d 1066 . . . . . 6 (𝜑 → (Xp𝑓 − (ℂ × {-𝑋})) ∈ (Poly‘ℂ))
35 addcl 9897 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
3635adantl 481 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
37 mulcl 9899 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
3837adantl 481 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
3930, 34, 36, 38plyco 23801 . . . . 5 (𝜑 → (𝐹 ∘ (Xp𝑓 − (ℂ × {-𝑋}))) ∈ (Poly‘ℂ))
4028, 39eqeltrrd 2689 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) ∈ (Poly‘ℂ))
4128fveq2d 6107 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xp𝑓 − (ℂ × {-𝑋})))) = (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))))
42 ftalem.2 . . . . . . 7 𝑁 = (deg‘𝐹)
43 eqid 2610 . . . . . . 7 (deg‘(Xp𝑓 − (ℂ × {-𝑋}))) = (deg‘(Xp𝑓 − (ℂ × {-𝑋})))
4442, 43, 30, 34dgrco 23835 . . . . . 6 (𝜑 → (deg‘(𝐹 ∘ (Xp𝑓 − (ℂ × {-𝑋})))) = (𝑁 · (deg‘(Xp𝑓 − (ℂ × {-𝑋})))))
45 ftalem.4 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
4633simp2d 1067 . . . . . . . 8 (𝜑 → (deg‘(Xp𝑓 − (ℂ × {-𝑋}))) = 1)
47 1nn 10908 . . . . . . . 8 1 ∈ ℕ
4846, 47syl6eqel 2696 . . . . . . 7 (𝜑 → (deg‘(Xp𝑓 − (ℂ × {-𝑋}))) ∈ ℕ)
4945, 48nnmulcld 10945 . . . . . 6 (𝜑 → (𝑁 · (deg‘(Xp𝑓 − (ℂ × {-𝑋})))) ∈ ℕ)
5044, 49eqeltrd 2688 . . . . 5 (𝜑 → (deg‘(𝐹 ∘ (Xp𝑓 − (ℂ × {-𝑋})))) ∈ ℕ)
5141, 50eqeltrrd 2689 . . . 4 (𝜑 → (deg‘(𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))) ∈ ℕ)
52 0cn 9911 . . . . . . 7 0 ∈ ℂ
53 oveq1 6556 . . . . . . . . 9 (𝑧 = 0 → (𝑧 + 𝑋) = (0 + 𝑋))
5453fveq2d 6107 . . . . . . . 8 (𝑧 = 0 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(0 + 𝑋)))
55 eqid 2610 . . . . . . . 8 (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋))) = (𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))
56 fvex 6113 . . . . . . . 8 (𝐹‘(0 + 𝑋)) ∈ V
5754, 55, 56fvmpt 6191 . . . . . . 7 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋)))
5852, 57ax-mp 5 . . . . . 6 ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹‘(0 + 𝑋))
594addid2d 10116 . . . . . . 7 (𝜑 → (0 + 𝑋) = 𝑋)
6059fveq2d 6107 . . . . . 6 (𝜑 → (𝐹‘(0 + 𝑋)) = (𝐹𝑋))
6158, 60syl5eq 2656 . . . . 5 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
62 ftalem7.6 . . . . 5 (𝜑 → (𝐹𝑋) ≠ 0)
6361, 62eqnetrd 2849 . . . 4 (𝜑 → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) ≠ 0)
641, 2, 40, 51, 63ftalem6 24604 . . 3 (𝜑 → ∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)))
65 id 22 . . . . . 6 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
66 addcl 9897 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
6765, 4, 66syl2anr 494 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝑦 + 𝑋) ∈ ℂ)
68 oveq1 6556 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑧 + 𝑋) = (𝑦 + 𝑋))
6968fveq2d 6107 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝐹‘(𝑧 + 𝑋)) = (𝐹‘(𝑦 + 𝑋)))
70 fvex 6113 . . . . . . . . . . 11 (𝐹‘(𝑦 + 𝑋)) ∈ V
7169, 55, 70fvmpt 6191 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7271adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦) = (𝐹‘(𝑦 + 𝑋)))
7372fveq2d 6107 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
7461adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0) = (𝐹𝑋))
7574fveq2d 6107 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) = (abs‘(𝐹𝑋)))
7673, 75breq12d 4596 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ (abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋))))
7725adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
7877, 67ffvelrnd 6268 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝐹‘(𝑦 + 𝑋)) ∈ ℂ)
7978abscld 14023 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹‘(𝑦 + 𝑋))) ∈ ℝ)
8025, 4ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ℂ)
8180abscld 14023 . . . . . . . . 9 (𝜑 → (abs‘(𝐹𝑋)) ∈ ℝ)
8281adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (abs‘(𝐹𝑋)) ∈ ℝ)
8379, 82ltnled 10063 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ((abs‘(𝐹‘(𝑦 + 𝑋))) < (abs‘(𝐹𝑋)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8476, 83bitrd 267 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8584biimpd 218 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
86 fveq2 6103 . . . . . . . . 9 (𝑥 = (𝑦 + 𝑋) → (𝐹𝑥) = (𝐹‘(𝑦 + 𝑋)))
8786fveq2d 6107 . . . . . . . 8 (𝑥 = (𝑦 + 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑦 + 𝑋))))
8887breq2d 4595 . . . . . . 7 (𝑥 = (𝑦 + 𝑋) → ((abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
8988notbid 307 . . . . . 6 (𝑥 = (𝑦 + 𝑋) → (¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))))
9089rspcev 3282 . . . . 5 (((𝑦 + 𝑋) ∈ ℂ ∧ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹‘(𝑦 + 𝑋)))) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
9167, 85, 90syl6an 566 . . . 4 ((𝜑𝑦 ∈ ℂ) → ((abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
9291rexlimdva 3013 . . 3 (𝜑 → (∃𝑦 ∈ ℂ (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘𝑦)) < (abs‘((𝑧 ∈ ℂ ↦ (𝐹‘(𝑧 + 𝑋)))‘0)) → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥))))
9364, 92mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
94 rexnal 2978 . 2 (∃𝑥 ∈ ℂ ¬ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)) ↔ ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
9593, 94sylib 207 1 (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑋)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  {csn 4125   class class class wbr 4583  cmpt 4643   I cid 4948   × cxp 5036  ccnv 5037  cres 5040  cima 5041  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cn 10897  abscabs 13822  Polycply 23744  Xpcidp 23745  coeffccoe 23746  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-limc 23436  df-dv 23437  df-ply 23748  df-idp 23749  df-coe 23750  df-dgr 23751  df-log 24107  df-cxp 24108
This theorem is referenced by:  fta  24606
  Copyright terms: Public domain W3C validator