MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrsub Structured version   Visualization version   GIF version

Theorem dgrsub 23832
Description: The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
dgrsub.1 𝑀 = (deg‘𝐹)
dgrsub.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgrsub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))

Proof of Theorem dgrsub
StepHypRef Expression
1 plyssc 23760 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3564 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 ssid 3587 . . . . 5 ℂ ⊆ ℂ
4 neg1cn 11001 . . . . 5 -1 ∈ ℂ
5 plyconst 23766 . . . . 5 ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ))
63, 4, 5mp2an 704 . . . 4 (ℂ × {-1}) ∈ (Poly‘ℂ)
71sseli 3564 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
8 plymulcl 23781 . . . 4 (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ))
96, 7, 8sylancr 694 . . 3 (𝐺 ∈ (Poly‘𝑆) → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ))
10 dgrsub.1 . . . 4 𝑀 = (deg‘𝐹)
11 eqid 2610 . . . 4 (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺))
1210, 11dgradd 23827 . . 3 ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ)) → (deg‘(𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), 𝑀))
132, 9, 12syl2an 493 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), 𝑀))
14 plyf 23758 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
15 plyf 23758 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
16 cnex 9896 . . . . 5 ℂ ∈ V
17 ofnegsub 10895 . . . . 5 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))
1816, 17mp3an1 1403 . . . 4 ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))
1914, 15, 18syl2an 493 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))
2019fveq2d 6107 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) = (deg‘(𝐹𝑓𝐺)))
21 neg1ne0 11003 . . . . . . 7 -1 ≠ 0
22 dgrmulc 23831 . . . . . . 7 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (deg‘𝐺))
234, 21, 22mp3an12 1406 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (deg‘𝐺))
24 dgrsub.2 . . . . . 6 𝑁 = (deg‘𝐺)
2523, 24syl6eqr 2662 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = 𝑁)
2625adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = 𝑁)
2726breq2d 4595 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) ↔ 𝑀𝑁))
2827, 26ifbieq1d 4059 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), 𝑀) = if(𝑀𝑁, 𝑁, 𝑀))
2913, 20, 283brtr3d 4614 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145  -cneg 10146  Polycply 23744  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  dgrcolem2  23834  plydivlem4  23855  plydiveu  23857  dgrsub2  36724
  Copyright terms: Public domain W3C validator