MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeidlem Structured version   Visualization version   GIF version

Theorem coeidlem 23797
Description: Lemma for coeid 23798. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
coeid.3 (𝜑𝐹 ∈ (Poly‘𝑆))
coeid.4 (𝜑𝑀 ∈ ℕ0)
coeid.5 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
coeid.6 (𝜑 → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})
coeid.7 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
coeidlem (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝐹   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧   𝐵,𝑘,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem coeidlem
StepHypRef Expression
1 coeid.7 . 2 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))))
2 dgrub.1 . . . . . . 7 𝐴 = (coeff‘𝐹)
3 coeid.3 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
4 coeid.4 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
5 coeid.5 . . . . . . . . . 10 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
6 plybss 23754 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
73, 6syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
8 0cnd 9912 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
98snssd 4281 . . . . . . . . . . . . 13 (𝜑 → {0} ⊆ ℂ)
107, 9unssd 3751 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 9896 . . . . . . . . . . . 12 ℂ ∈ V
12 ssexg 4732 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 693 . . . . . . . . . . 11 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 11175 . . . . . . . . . . 11 0 ∈ V
15 elmapg 7757 . . . . . . . . . . 11 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 693 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 221 . . . . . . . . 9 (𝜑𝐵:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 5970 . . . . . . . 8 (𝜑𝐵:ℕ0⟶ℂ)
19 coeid.6 . . . . . . . 8 (𝜑 → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})
203, 4, 18, 19, 1coeeq 23787 . . . . . . 7 (𝜑 → (coeff‘𝐹) = 𝐵)
212, 20syl5req 2657 . . . . . 6 (𝜑𝐵 = 𝐴)
2221adantr 480 . . . . 5 ((𝜑𝑧 ∈ ℂ) → 𝐵 = 𝐴)
23 fveq1 6102 . . . . . . 7 (𝐵 = 𝐴 → (𝐵𝑘) = (𝐴𝑘))
2423oveq1d 6564 . . . . . 6 (𝐵 = 𝐴 → ((𝐵𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2524sumeq2sdv 14282 . . . . 5 (𝐵 = 𝐴 → Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
2622, 25syl 17 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
273adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
28 dgrub.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
29 dgrcl 23793 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
3028, 29syl5eqel 2692 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
3127, 30syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
3231nn0zd 11356 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
334adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑀 ∈ ℕ0)
3433nn0zd 11356 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑀 ∈ ℤ)
3522imaeq1d 5384 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐵 “ (ℤ‘(𝑀 + 1))) = (𝐴 “ (ℤ‘(𝑀 + 1))))
3619adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})
3735, 36eqtr3d 2646 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
382, 28dgrlb 23796 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)
3927, 33, 37, 38syl3anc 1318 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁𝑀)
40 eluz2 11569 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
4132, 34, 39, 40syl3anbrc 1239 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → 𝑀 ∈ (ℤ𝑁))
42 fzss2 12252 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...𝑀))
4341, 42syl 17 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀))
44 elfznn0 12302 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
45 plyssc 23760 . . . . . . . . . . 11 (Poly‘𝑆) ⊆ (Poly‘ℂ)
4645, 3sseldi 3566 . . . . . . . . . 10 (𝜑𝐹 ∈ (Poly‘ℂ))
472coef3 23792 . . . . . . . . . 10 (𝐹 ∈ (Poly‘ℂ) → 𝐴:ℕ0⟶ℂ)
4846, 47syl 17 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
4948adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
5049ffvelrnda 6267 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
51 expcl 12740 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
5251adantll 746 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
5350, 52mulcld 9939 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
5444, 53sylan2 490 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
55 eldifn 3695 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
5655adantl 481 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
57 eldifi 3694 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀))
58 elfznn0 12302 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
5957, 58syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
602, 28dgrub 23794 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
61603expia 1259 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
6227, 59, 61syl2an 493 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
63 elfzuz 12209 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ‘0))
6457, 63syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (ℤ‘0))
65 elfz5 12205 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
6664, 32, 65syl2anr 494 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
6762, 66sylibrd 248 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
6867necon1bd 2800 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴𝑘) = 0))
6956, 68mpd 15 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴𝑘) = 0)
7069oveq1d 6564 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
71 simpr 476 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
7271, 59, 51syl2an 493 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑧𝑘) ∈ ℂ)
7372mul02d 10113 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑧𝑘)) = 0)
7470, 73eqtrd 2644 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑧𝑘)) = 0)
75 fzfid 12634 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin)
7643, 54, 74, 75fsumss 14303 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
7726, 76eqtr4d 2647 . . 3 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
7877mpteq2dva 4672 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
791, 78eqtrd 2644 1 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  cun 3538  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  Σcsu 14264  Polycply 23744  coeffccoe 23746  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  coeid  23798
  Copyright terms: Public domain W3C validator