MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsq1p Structured version   Visualization version   GIF version

Theorem dvdsq1p 23724
Description: Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
dvdsq1p.p 𝑃 = (Poly1𝑅)
dvdsq1p.d = (∥r𝑃)
dvdsq1p.b 𝐵 = (Base‘𝑃)
dvdsq1p.c 𝐶 = (Unic1p𝑅)
dvdsq1p.t · = (.r𝑃)
dvdsq1p.q 𝑄 = (quot1p𝑅)
Assertion
Ref Expression
dvdsq1p ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))

Proof of Theorem dvdsq1p
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 dvdsq1p.p . . . . . 6 𝑃 = (Poly1𝑅)
2 dvdsq1p.b . . . . . 6 𝐵 = (Base‘𝑃)
3 dvdsq1p.c . . . . . 6 𝐶 = (Unic1p𝑅)
41, 2, 3uc1pcl 23707 . . . . 5 (𝐺𝐶𝐺𝐵)
543ad2ant3 1077 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
6 dvdsq1p.d . . . . 5 = (∥r𝑃)
7 dvdsq1p.t . . . . 5 · = (.r𝑃)
82, 6, 7dvdsr2 18470 . . . 4 (𝐺𝐵 → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
95, 8syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
10 eqcom 2617 . . . . 5 ((𝑞 · 𝐺) = 𝐹𝐹 = (𝑞 · 𝐺))
11 simprr 792 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = (𝑞 · 𝐺))
12 simprl 790 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑞𝐵)
13 simpl1 1057 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑅 ∈ Ring)
141ply1ring 19439 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1513, 14syl 17 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Ring)
16 ringgrp 18375 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Grp)
18 simpl2 1058 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐹𝐵)
19 simpr 476 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑞𝐵)
205adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐺𝐵)
212, 7ringcl 18384 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Ring ∧ 𝑞𝐵𝐺𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
2215, 19, 20, 21syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
23 eqid 2610 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
24 eqid 2610 . . . . . . . . . . . . . . . 16 (-g𝑃) = (-g𝑃)
252, 23, 24grpsubeq0 17324 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝑞 · 𝐺) ∈ 𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2617, 18, 22, 25syl3anc 1318 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2726biimprd 237 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃)))
2827impr 647 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃))
2928fveq2d 6107 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = (( deg1𝑅)‘(0g𝑃)))
30 simpl1 1057 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑅 ∈ Ring)
31 eqid 2610 . . . . . . . . . . . . 13 ( deg1𝑅) = ( deg1𝑅)
3231, 1, 23deg1z 23651 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (( deg1𝑅)‘(0g𝑃)) = -∞)
3330, 32syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(0g𝑃)) = -∞)
3429, 33eqtrd 2644 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = -∞)
3531, 3uc1pdeg 23711 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℕ0)
36353adant2 1073 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℕ0)
3736nn0red 11229 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℝ)
3837adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘𝐺) ∈ ℝ)
39 mnflt 11833 . . . . . . . . . . 11 ((( deg1𝑅)‘𝐺) ∈ ℝ → -∞ < (( deg1𝑅)‘𝐺))
4038, 39syl 17 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → -∞ < (( deg1𝑅)‘𝐺))
4134, 40eqbrtrd 4605 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺))
42 dvdsq1p.q . . . . . . . . . . 11 𝑄 = (quot1p𝑅)
4342, 1, 2, 31, 24, 7, 3q1peqb 23718 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑞𝐵 ∧ (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4443adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝑞𝐵 ∧ (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4512, 41, 44mpbi2and 958 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹𝑄𝐺) = 𝑞)
4645oveq1d 6564 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝐹𝑄𝐺) · 𝐺) = (𝑞 · 𝐺))
4711, 46eqtr4d 2647 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺))
4847expr 641 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
4910, 48syl5bi 231 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
5049rexlimdva 3013 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
519, 50sylbid 229 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
5242, 1, 2, 3q1pcl 23719 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) ∈ 𝐵)
532, 6, 7dvdsrmul 18471 . . . 4 ((𝐺𝐵 ∧ (𝐹𝑄𝐺) ∈ 𝐵) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
545, 52, 53syl2anc 691 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
55 breq2 4587 . . 3 (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → (𝐺 𝐹𝐺 ((𝐹𝑄𝐺) · 𝐺)))
5654, 55syl5ibrcom 236 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → 𝐺 𝐹))
5751, 56impbid 201 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  -∞cmnf 9951   < clt 9953  0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923  Grpcgrp 17245  -gcsg 17247  Ringcrg 18370  rcdsr 18461  Poly1cpl1 19368   deg1 cdg1 23618  Unic1pcuc1p 23690  quot1pcq1p 23691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-subrg 18601  df-lmod 18688  df-lss 18754  df-rlreg 19104  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-cnfld 19568  df-mdeg 23619  df-deg1 23620  df-uc1p 23695  df-q1p 23696
This theorem is referenced by:  dvdsr1p  23725  fta1glem1  23729  fta1glem2  23730
  Copyright terms: Public domain W3C validator