Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mon1pldg | Structured version Visualization version GIF version |
Description: Unitic polynomials have one leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
mon1pldg.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
mon1pldg.o | ⊢ 1 = (1r‘𝑅) |
mon1pldg.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
Ref | Expression |
---|---|
mon1pldg | ⊢ (𝐹 ∈ 𝑀 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . 3 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
2 | eqid 2610 | . . 3 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
3 | eqid 2610 | . . 3 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
4 | mon1pldg.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
5 | mon1pldg.m | . . 3 ⊢ 𝑀 = (Monic1p‘𝑅) | |
6 | mon1pldg.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | ismon1p 23706 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝐹 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
8 | 7 | simp3bi 1071 | 1 ⊢ (𝐹 ∈ 𝑀 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ‘cfv 5804 Basecbs 15695 0gc0g 15923 1rcur 18324 Poly1cpl1 19368 coe1cco1 19369 deg1 cdg1 23618 Monic1pcmn1 23689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-slot 15699 df-base 15700 df-mon1 23694 |
This theorem is referenced by: mon1puc1p 23714 deg1submon1p 23716 mon1psubm 36803 |
Copyright terms: Public domain | W3C validator |