MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg Structured version   Visualization version   GIF version

Theorem ply1divalg 23701
Description: The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divalg.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
ply1divalg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ply1divalg (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   0 ,𝑞
Allowed substitution hint:   𝑈(𝑞)

Proof of Theorem ply1divalg
StepHypRef Expression
1 ply1divalg.p . . 3 𝑃 = (Poly1𝑅)
2 ply1divalg.d . . 3 𝐷 = ( deg1𝑅)
3 ply1divalg.b . . 3 𝐵 = (Base‘𝑃)
4 ply1divalg.m . . 3 = (-g𝑃)
5 ply1divalg.z . . 3 0 = (0g𝑃)
6 ply1divalg.t . . 3 = (.r𝑃)
7 ply1divalg.r1 . . 3 (𝜑𝑅 ∈ Ring)
8 ply1divalg.f . . 3 (𝜑𝐹𝐵)
9 ply1divalg.g1 . . 3 (𝜑𝐺𝐵)
10 ply1divalg.g2 . . 3 (𝜑𝐺0 )
11 eqid 2610 . . 3 (1r𝑅) = (1r𝑅)
12 eqid 2610 . . 3 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2610 . . 3 (.r𝑅) = (.r𝑅)
14 ply1divalg.g3 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
15 ply1divalg.u . . . . 5 𝑈 = (Unit‘𝑅)
16 eqid 2610 . . . . 5 (invr𝑅) = (invr𝑅)
1715, 16, 12ringinvcl 18499 . . . 4 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈) → ((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺))) ∈ (Base‘𝑅))
187, 14, 17syl2anc 691 . . 3 (𝜑 → ((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺))) ∈ (Base‘𝑅))
1915, 16, 13, 11unitrinv 18501 . . . 4 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈) → (((coe1𝐺)‘(𝐷𝐺))(.r𝑅)((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺)))) = (1r𝑅))
207, 14, 19syl2anc 691 . . 3 (𝜑 → (((coe1𝐺)‘(𝐷𝐺))(.r𝑅)((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺)))) = (1r𝑅))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20ply1divex 23700 . 2 (𝜑 → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
22 eqid 2610 . . . . . 6 (RLReg‘𝑅) = (RLReg‘𝑅)
2322, 15unitrrg 19114 . . . . 5 (𝑅 ∈ Ring → 𝑈 ⊆ (RLReg‘𝑅))
247, 23syl 17 . . . 4 (𝜑𝑈 ⊆ (RLReg‘𝑅))
2524, 14sseldd 3569 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (RLReg‘𝑅))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 22ply1divmo 23699 . 2 (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
27 reu5 3136 . 2 (∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ (∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
2821, 26, 27sylanbrc 695 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wne 2780  wrex 2897  ∃!wreu 2898  ∃*wrmo 2899  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549   < clt 9953  Basecbs 15695  .rcmulr 15769  0gc0g 15923  -gcsg 17247  1rcur 18324  Ringcrg 18370  Unitcui 18462  invrcinvr 18494  RLRegcrlreg 19100  Poly1cpl1 19368  coe1cco1 19369   deg1 cdg1 23618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-subrg 18601  df-lmod 18688  df-lss 18754  df-rlreg 19104  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-cnfld 19568  df-mdeg 23619  df-deg1 23620
This theorem is referenced by:  ply1divalg2  23702
  Copyright terms: Public domain W3C validator