MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyadd Structured version   Visualization version   GIF version

Theorem plyadd 23777
Description: The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plyadd (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑆,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦

Proof of Theorem plyadd
Dummy variables 𝑘 𝑚 𝑛 𝑧 𝑎 𝑏 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply2 23756 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))))
32simprbi 479 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
41, 3syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
5 plyadd.2 . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
6 elply2 23756 . . . 4 (𝐺 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
76simprbi 479 . . 3 (𝐺 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
85, 7syl 17 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
9 reeanv 3086 . . 3 (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
10 reeanv 3086 . . . . 5 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
11 simp1l 1078 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝜑)
1211, 1syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 ∈ (Poly‘𝑆))
1311, 5syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 ∈ (Poly‘𝑆))
14 plyadd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1511, 14sylan 487 . . . . . . . 8 ((((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
16 simp1rl 1119 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑚 ∈ ℕ0)
17 simp1rr 1120 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑛 ∈ ℕ0)
18 simp2l 1080 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
19 simp2r 1081 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
20 simp3ll 1125 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑎 “ (ℤ‘(𝑚 + 1))) = {0})
21 simp3rl 1127 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑏 “ (ℤ‘(𝑛 + 1))) = {0})
22 simp3lr 1126 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))
23 oveq1 6556 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑧𝑘) = (𝑤𝑘))
2423oveq2d 6565 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
2524sumeq2sdv 14282 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)))
26 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
27 oveq2 6557 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
2826, 27oveq12d 6567 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
2928cbvsumv 14274 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))
3025, 29syl6eq 2660 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3130cbvmptv 4678 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3222, 31syl6eq 2660 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))))
33 simp3rr 1128 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))
3423oveq2d 6565 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑏𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑤𝑘)))
3534sumeq2sdv 14282 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)))
36 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
3736, 27oveq12d 6567 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑏𝑘) · (𝑤𝑘)) = ((𝑏𝑗) · (𝑤𝑗)))
3837cbvsumv 14274 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))
3935, 38syl6eq 2660 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4039cbvmptv 4678 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4133, 40syl6eq 2660 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))))
4212, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41plyaddlem 23775 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
43423expia 1259 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → ((((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
4443rexlimdvva 3020 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
4510, 44syl5bir 232 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
4645rexlimdvva 3020 . . 3 (𝜑 → (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
479, 46syl5bir 232 . 2 (𝜑 → ((∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
484, 8, 47mp2and 711 1 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  cun 3538  wss 3540  {csn 4125  cmpt 4643  cima 5041  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑚 cmap 7744  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  0cn0 11169  cuz 11563  ...cfz 12197  cexp 12722  Σcsu 14264  Polycply 23744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-ply 23748
This theorem is referenced by:  plysub  23779  plyaddcl  23780  plyco  23801  plydivlem4  23855  iaa  23884  rngunsnply  36762
  Copyright terms: Public domain W3C validator