MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1peu Structured version   Visualization version   GIF version

Theorem ig1peu 23735
Description: There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1peu.p 𝑃 = (Poly1𝑅)
ig1peu.u 𝑈 = (LIdeal‘𝑃)
ig1peu.z 0 = (0g𝑃)
ig1peu.m 𝑀 = (Monic1p𝑅)
ig1peu.d 𝐷 = ( deg1𝑅)
Assertion
Ref Expression
ig1peu ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Distinct variable groups:   𝐷,𝑔   𝑔,𝐼   𝑔,𝑀   𝑃,𝑔   𝑅,𝑔   𝑈,𝑔   0 ,𝑔

Proof of Theorem ig1peu
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
2 ig1peu.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑃)
31, 2lidlss 19031 . . . . . . . . . 10 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
433ad2ant2 1076 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ⊆ (Base‘𝑃))
54ssdifd 3708 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }))
6 imass2 5420 . . . . . . . 8 ((𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
75, 6syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
8 drngring 18577 . . . . . . . . 9 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
983ad2ant1 1075 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑅 ∈ Ring)
10 ig1peu.d . . . . . . . . 9 𝐷 = ( deg1𝑅)
11 ig1peu.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
12 ig1peu.z . . . . . . . . 9 0 = (0g𝑃)
1310, 11, 12, 1deg1n0ima 23653 . . . . . . . 8 (𝑅 ∈ Ring → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
149, 13syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
157, 14sstrd 3578 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℕ0)
16 nn0uz 11598 . . . . . 6 0 = (ℤ‘0)
1715, 16syl6sseq 3614 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
1811ply1ring 19439 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
199, 18syl 17 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Ring)
20 simp2 1055 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼𝑈)
212, 12lidl0cl 19033 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
2219, 20, 21syl2anc 691 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 0𝐼)
2322snssd 4281 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊆ 𝐼)
24 simp3 1056 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
2524necomd 2837 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼)
26 pssdifn0 3898 . . . . . . 7 (({ 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼) → (𝐼 ∖ { 0 }) ≠ ∅)
2723, 25, 26syl2anc 691 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ≠ ∅)
2810, 11, 1deg1xrf 23645 . . . . . . . . . 10 𝐷:(Base‘𝑃)⟶ℝ*
29 ffn 5958 . . . . . . . . . 10 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3028, 29ax-mp 5 . . . . . . . . 9 𝐷 Fn (Base‘𝑃)
3130a1i 11 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐷 Fn (Base‘𝑃))
324ssdifssd 3710 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
33 fnimaeq0 5926 . . . . . . . 8 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃)) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3431, 32, 33syl2anc 691 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3534necon3bid 2826 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅ ↔ (𝐼 ∖ { 0 }) ≠ ∅))
3627, 35mpbird 246 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅)
37 infssuzcl 11648 . . . . 5 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
3817, 36, 37syl2anc 691 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
39 fvelimab 6163 . . . . 5 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃)) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })) ↔ ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4031, 32, 39syl2anc 691 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })) ↔ ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4138, 40mpbid 221 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
4219adantr 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑃 ∈ Ring)
43 simpl2 1058 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼𝑈)
449adantr 480 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring)
45 eqid 2610 . . . . . . . . . . 11 (algSc‘𝑃) = (algSc‘𝑃)
46 eqid 2610 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4711, 45, 46, 1ply1sclf 19476 . . . . . . . . . 10 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
4844, 47syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
49 simpl1 1057 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ DivRing)
5032sselda 3568 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Base‘𝑃))
51 eldifsni 4261 . . . . . . . . . . . . . 14 ( ∈ (𝐼 ∖ { 0 }) → 0 )
5251adantl 481 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 0 )
53 eqid 2610 . . . . . . . . . . . . . 14 (Unic1p𝑅) = (Unic1p𝑅)
5411, 1, 12, 53drnguc1p 23734 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ ∈ (Base‘𝑃) ∧ 0 ) → ∈ (Unic1p𝑅))
5549, 50, 52, 54syl3anc 1318 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Unic1p𝑅))
56 eqid 2610 . . . . . . . . . . . . 13 (Unit‘𝑅) = (Unit‘𝑅)
5710, 56, 53uc1pldg 23712 . . . . . . . . . . . 12 ( ∈ (Unic1p𝑅) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
5855, 57syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
59 eqid 2610 . . . . . . . . . . . 12 (invr𝑅) = (invr𝑅)
6056, 59unitinvcl 18497 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1)‘(𝐷)) ∈ (Unit‘𝑅)) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6144, 58, 60syl2anc 691 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6246, 56unitcl 18482 . . . . . . . . . 10 (((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6361, 62syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6448, 63ffvelrnd 6268 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃))
65 eldifi 3694 . . . . . . . . 9 ( ∈ (𝐼 ∖ { 0 }) → 𝐼)
6665adantl 481 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼)
67 eqid 2610 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
682, 1, 67lidlmcl 19038 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃) ∧ 𝐼)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
6942, 43, 64, 66, 68syl22anc 1319 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
70 ig1peu.m . . . . . . . . 9 𝑀 = (Monic1p𝑅)
7153, 70, 11, 67, 45, 10, 59uc1pmon1p 23715 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ∈ (Unic1p𝑅)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7244, 55, 71syl2anc 691 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7369, 72elind 3760 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀))
74 eqid 2610 . . . . . . . . . 10 (RLReg‘𝑅) = (RLReg‘𝑅)
7574, 56unitrrg 19114 . . . . . . . . 9 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7644, 75syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7776, 61sseldd 3569 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅))
7810, 11, 74, 1, 67, 45deg1mul3 23679 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅) ∧ ∈ (Base‘𝑃)) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
7944, 77, 50, 78syl3anc 1318 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
80 fveq2 6103 . . . . . . . 8 (𝑔 = (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) → (𝐷𝑔) = (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))))
8180eqeq1d 2612 . . . . . . 7 (𝑔 = (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) → ((𝐷𝑔) = (𝐷) ↔ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)))
8281rspcev 3282 . . . . . 6 (((((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀) ∧ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
8373, 79, 82syl2anc 691 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
84 eqeq2 2621 . . . . . 6 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ((𝐷𝑔) = (𝐷) ↔ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8584rexbidv 3034 . . . . 5 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷) ↔ ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8683, 85syl5ibcom 234 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8786rexlimdva 3013 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8841, 87mpd 15 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
89 eqid 2610 . . . . . . 7 (-g𝑃) = (-g𝑃)
909ad2antrr 758 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑅 ∈ Ring)
91 inss2 3796 . . . . . . . . 9 (𝐼𝑀) ⊆ 𝑀
92 simprl 790 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (𝐼𝑀))
9391, 92sseldi 3566 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝑀)
9493adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑔𝑀)
95 simprl 790 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
96 simprr 792 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (𝐼𝑀))
9791, 96sseldi 3566 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑀)
9897adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑀)
99 simprr 792 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
10010, 70, 11, 89, 90, 94, 95, 98, 99deg1submon1p 23716 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
101100ex 449 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
10217ad2antrr 758 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
10330a1i 11 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → 𝐷 Fn (Base‘𝑃))
10432ad2antrr 758 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
10519adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Ring)
106 simpl2 1058 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼𝑈)
107 inss1 3795 . . . . . . . . . . . . . 14 (𝐼𝑀) ⊆ 𝐼
108107, 92sseldi 3566 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝐼)
109107, 96sseldi 3566 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼)
1102, 89lidlsubcl 19037 . . . . . . . . . . . . 13 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑔𝐼𝐼)) → (𝑔(-g𝑃)) ∈ 𝐼)
111105, 106, 108, 109, 110syl22anc 1319 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ 𝐼)
112111adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ 𝐼)
113 simpr 476 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ≠ 0 )
114 eldifsn 4260 . . . . . . . . . . 11 ((𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }) ↔ ((𝑔(-g𝑃)) ∈ 𝐼 ∧ (𝑔(-g𝑃)) ≠ 0 ))
115112, 113, 114sylanbrc 695 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }))
116 fnfvima 6400 . . . . . . . . . 10 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃) ∧ (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 })) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
117103, 104, 115, 116syl3anc 1318 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
118 infssuzle 11647 . . . . . . . . 9 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
119102, 117, 118syl2anc 691 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
120119ex 449 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃)))))
121 imassrn 5396 . . . . . . . . . . 11 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ran 𝐷
122 frn 5966 . . . . . . . . . . . 12 (𝐷:(Base‘𝑃)⟶ℝ* → ran 𝐷 ⊆ ℝ*)
12328, 122ax-mp 5 . . . . . . . . . . 11 ran 𝐷 ⊆ ℝ*
124121, 123sstri 3577 . . . . . . . . . 10 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℝ*
125124, 38sseldi 3566 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
126125adantr 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
127 ringgrp 18375 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
12819, 127syl 17 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Grp)
129128adantr 480 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Grp)
130107, 4syl5ss 3579 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼𝑀) ⊆ (Base‘𝑃))
131130adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐼𝑀) ⊆ (Base‘𝑃))
132131, 92sseldd 3569 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (Base‘𝑃))
133131, 96sseldd 3569 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (Base‘𝑃))
1341, 89grpsubcl 17318 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
135129, 132, 133, 134syl3anc 1318 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
13610, 11, 1deg1xrcl 23646 . . . . . . . . 9 ((𝑔(-g𝑃)) ∈ (Base‘𝑃) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
137135, 136syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
138 xrlenlt 9982 . . . . . . . 8 ((inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ* ∧ (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))) ↔ ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
139126, 137, 138syl2anc 691 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))) ↔ ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
140120, 139sylibd 228 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
141140necon4ad 2801 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (𝑔(-g𝑃)) = 0 ))
142101, 141syld 46 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝑔(-g𝑃)) = 0 ))
1431, 12, 89grpsubeq0 17324 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → ((𝑔(-g𝑃)) = 0𝑔 = ))
144129, 132, 133, 143syl3anc 1318 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) = 0𝑔 = ))
145142, 144sylibd 228 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
146145ralrimivva 2954 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
147 fveq2 6103 . . . 4 (𝑔 = → (𝐷𝑔) = (𝐷))
148147eqeq1d 2612 . . 3 (𝑔 = → ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
149148reu4 3367 . 2 (∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = )))
15088, 146, 149sylanbrc 695 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  ∃!wreu 2898  cdif 3537  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  ran crn 5039  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  infcinf 8230  cr 9814  0cc0 9815  *cxr 9952   < clt 9953  cle 9954  0cn0 11169  cuz 11563  Basecbs 15695  .rcmulr 15769  0gc0g 15923  Grpcgrp 17245  -gcsg 17247  Ringcrg 18370  Unitcui 18462  invrcinvr 18494  DivRingcdr 18570  LIdealclidl 18991  RLRegcrlreg 19100  algSccascl 19132  Poly1cpl1 19368  coe1cco1 19369   deg1 cdg1 23618  Monic1pcmn1 23689  Unic1pcuc1p 23690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rlreg 19104  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-cnfld 19568  df-mdeg 23619  df-deg1 23620  df-mon1 23694  df-uc1p 23695
This theorem is referenced by:  ig1pval3  23738
  Copyright terms: Public domain W3C validator