Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hba1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∀𝑥𝜑. This corresponds to the axiom (4) of modal logic. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 15-Dec-2017.) (Proof shortened by Wolf Lammen, 12-Oct-2021.) |
Ref | Expression |
---|---|
hba1 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2015 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nf5ri 2053 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-ex 1696 df-nf 1701 |
This theorem is referenced by: nfa1OLD 2143 nfaldOLD 2152 nfa1OLDOLD 2195 axi5r 2582 axial 2583 bj-19.41al 31826 bj-modal4e 31892 hbntal 37790 hbimpg 37791 hbimpgVD 38162 hbalgVD 38163 hbexgVD 38164 ax6e2eqVD 38165 e2ebindVD 38170 vk15.4jVD 38172 |
Copyright terms: Public domain | W3C validator |