Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax13b Structured version   Visualization version   GIF version

Theorem ax13b 1951
 Description: An equivalence between two ways of expressing ax-13 2234. See the comment for ax-13 2234. (Contributed by NM, 2-May-2017.) (Proof shortened by Wolf Lammen, 26-Feb-2018.) (Revised by BJ, 15-Sep-2020.)
Assertion
Ref Expression
ax13b ((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧𝜑)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑))))

Proof of Theorem ax13b
StepHypRef Expression
1 ax-1 6 . . 3 ((𝑦 = 𝑧𝜑) → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑)))
2 equeuclr 1937 . . . . . 6 (𝑦 = 𝑧 → (𝑥 = 𝑧𝑥 = 𝑦))
32con3rr3 150 . . . . 5 𝑥 = 𝑦 → (𝑦 = 𝑧 → ¬ 𝑥 = 𝑧))
43imim1d 80 . . . 4 𝑥 = 𝑦 → ((¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑)) → (𝑦 = 𝑧 → (𝑦 = 𝑧𝜑))))
5 pm2.43 54 . . . 4 ((𝑦 = 𝑧 → (𝑦 = 𝑧𝜑)) → (𝑦 = 𝑧𝜑))
64, 5syl6 34 . . 3 𝑥 = 𝑦 → ((¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑)) → (𝑦 = 𝑧𝜑)))
71, 6impbid2 215 . 2 𝑥 = 𝑦 → ((𝑦 = 𝑧𝜑) ↔ (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑))))
87pm5.74i 259 1 ((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧𝜑)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by:  ax13  2237  ax13OLD  2293  ax13fromc9  33209
 Copyright terms: Public domain W3C validator