 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdpc7 Structured version   Visualization version   GIF version

Theorem stdpc7 1945
 Description: One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1944.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑥)." Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.)
Assertion
Ref Expression
stdpc7 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))

Proof of Theorem stdpc7
StepHypRef Expression
1 sbequ2 1869 . 2 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
21equcoms 1934 1 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-sb 1868 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator