 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equvelv Structured version   Visualization version   GIF version

Theorem equvelv 1950
 Description: A specialized version of equvel 2335 with distinct variable restrictions and fewer axiom usage. (Contributed by Wolf Lammen, 10-Apr-2021.)
Assertion
Ref Expression
equvelv (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 = 𝑥𝑧 = 𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem equvelv
StepHypRef Expression
1 equtrr 1936 . . 3 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
21alrimiv 1842 . 2 (𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑥𝑧 = 𝑦))
3 equs4v 1917 . . 3 (∀𝑧(𝑧 = 𝑥𝑧 = 𝑦) → ∃𝑧(𝑧 = 𝑥𝑧 = 𝑦))
4 equvinv 1946 . . 3 (𝑥 = 𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧 = 𝑦))
53, 4sylibr 223 . 2 (∀𝑧(𝑧 = 𝑥𝑧 = 𝑦) → 𝑥 = 𝑦)
62, 5impbii 198 1 (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 = 𝑥𝑧 = 𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator