Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equs4 | Structured version Visualization version GIF version |
Description: Lemma used in proofs of implicit substitution properties. The converse requires either a dv condition (sb56 2136) or a non-freeness hypothesis (equs45f 2338). See equs4v 1917 for a version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) |
Ref | Expression |
---|---|
equs4 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6e 2238 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | exintr 1810 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1473 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 |
This theorem is referenced by: equsex 2281 equs45f 2338 equs5 2339 sb2 2340 bj-sbsb 32012 |
Copyright terms: Public domain | W3C validator |