 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs4 Structured version   Visualization version   GIF version

Theorem equs4 2278
 Description: Lemma used in proofs of implicit substitution properties. The converse requires either a dv condition (sb56 2136) or a non-freeness hypothesis (equs45f 2338). See equs4v 1917 for a version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) (Proof shortened by Wolf Lammen, 5-Feb-2018.)
Assertion
Ref Expression
equs4 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem equs4
StepHypRef Expression
1 ax6e 2238 . 2 𝑥 𝑥 = 𝑦
2 exintr 1810 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑦𝜑)))
31, 2mpi 20 1 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1473  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by:  equsex  2281  equs45f  2338  equs5  2339  sb2  2340  bj-sbsb  32012
 Copyright terms: Public domain W3C validator