Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc15 Structured version   Visualization version   GIF version

Theorem axc15 2291
 Description: Derivation of set.mm's original ax-c15 33192 from ax-c11n 33191 and the shorter ax-12 2034 that has replaced it. Theorem ax12 2292 shows the reverse derivation of ax-12 2034 from ax-c15 33192. Normally, axc15 2291 should be used rather than ax-c15 33192, except by theorems specifically studying the latter's properties. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 21-Apr-2018.)
Assertion
Ref Expression
axc15 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))

Proof of Theorem axc15
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax6ev 1877 . 2 𝑧 𝑧 = 𝑦
2 dveeq2 2286 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
3 ax12v 2035 . . . . 5 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
4 equequ2 1940 . . . . . . 7 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
54sps 2043 . . . . . 6 (∀𝑥 𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
6 nfa1 2015 . . . . . . . 8 𝑥𝑥 𝑧 = 𝑦
75imbi1d 330 . . . . . . . 8 (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
86, 7albid 2077 . . . . . . 7 (∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
98imbi2d 329 . . . . . 6 (∀𝑥 𝑧 = 𝑦 → ((𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
105, 9imbi12d 333 . . . . 5 (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
113, 10mpbii 222 . . . 4 (∀𝑥 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
122, 11syl6 34 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
1312exlimdv 1848 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
141, 13mpi 20 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195  ∀wal 1473  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701 This theorem is referenced by:  ax12  2292  ax12OLD  2329  ax12b  2333  equs5  2339  ax12vALT  2416  bj-ax12v3ALT  31863
 Copyright terms: Public domain W3C validator