Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc15 Structured version   Unicode version

Theorem axc15 2141
 Description: Derivation of set.mm's original ax-c15 32386 from ax-c11n 32385 and the shorter ax-12 1906 that has replaced it. Theorem ax12 32400 shows the reverse derivation of ax-12 1906 from ax-c15 32386. Normally, axc15 2141 should be used rather than ax-c15 32386, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)
Assertion
Ref Expression
axc15

Proof of Theorem axc15
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-12 1906 . 2
21ax12a2 2140 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1436 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-12 1906  ax-13 2054 This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1661  df-nf 1665 This theorem is referenced by:  ax12b  2142  equs5  2146  ax12vALT  2223
 Copyright terms: Public domain W3C validator