Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ssbssblem | Structured version Visualization version GIF version |
Description: Composition of two substitutions with a fresh intermediate variable. Remark: does not seem useful. (Contributed by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
bj-ssbssblem | ⊢ ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ssb1 31822 | . 2 ⊢ ([𝑡/𝑦]b∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | bj-ssb1 31822 | . . 3 ⊢ ([𝑦/𝑥]b𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | 2 | bj-ssbbii 31813 | . 2 ⊢ ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑦]b∀𝑥(𝑥 = 𝑦 → 𝜑)) |
4 | df-ssb 31809 | . 2 ⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
5 | 1, 3, 4 | 3bitr4i 291 | 1 ⊢ ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 [wssb 31808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-11 2021 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-ssb 31809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |