Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12iOLD Structured version   Visualization version   GIF version

Theorem bj-ax12iOLD 31804
Description: Old proof of bj-ax12i 31803. Obsolete as of 29-Dec-2020. (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-ax12i.1 (𝜑 → (𝜓𝜒))
bj-ax12i.2 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
bj-ax12iOLD (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))

Proof of Theorem bj-ax12iOLD
StepHypRef Expression
1 bj-ax12i.1 . 2 (𝜑 → (𝜓𝜒))
2 bj-ax12i.2 . . 3 (𝜒 → ∀𝑥𝜒)
31biimprcd 239 . . 3 (𝜒 → (𝜑𝜓))
42, 3alrimih 1741 . 2 (𝜒 → ∀𝑥(𝜑𝜓))
51, 4syl6bi 242 1 (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728
This theorem depends on definitions:  df-bi 196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator