MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdpc4 Structured version   Visualization version   GIF version

Theorem stdpc4 2340
Description: The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑦 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "𝑥𝜑(𝑥) → 𝜑(𝑦), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥)." Axiom 4 of [Mendelson] p. 69. See also spsbc 3414 and rspsbc 3483. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
stdpc4 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)

Proof of Theorem stdpc4
StepHypRef Expression
1 ala1 1754 . 2 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
2 sb2 2339 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
31, 2syl 17 1 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1472  [wsb 1866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-12 2033  ax-13 2233
This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695  df-sb 1867
This theorem is referenced by:  2stdpc4  2341  sbft  2366  spsbim  2381  spsbbi  2389  sbt  2406  sbtrt  2407  pm13.183  3312  spsbc  3414  nd1  9265  nd2  9266  bj-vexwt  31844  axfrege58b  37010  pm10.14  37376  pm11.57  37407
  Copyright terms: Public domain W3C validator