MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs45f Structured version   Visualization version   GIF version

Theorem equs45f 2338
Description: Two ways of expressing substitution when 𝑦 is not free in 𝜑. The implication "to the left" is equs4 2278 and does not require the non-freeness hypothesis. Theorem sb56 2136 replaces the non-freeness hypothesis with a dv condition and equs5 2339 replaces it with a distinctor as antecedent. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
equs45f.1 𝑦𝜑
Assertion
Ref Expression
equs45f (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem equs45f
StepHypRef Expression
1 equs45f.1 . . . . . 6 𝑦𝜑
21nf5ri 2053 . . . . 5 (𝜑 → ∀𝑦𝜑)
32anim2i 591 . . . 4 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦𝜑))
43eximi 1752 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑))
5 equs5a 2336 . . 3 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
64, 5syl 17 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
7 equs4 2278 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
86, 7impbii 198 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473  wex 1695  wnf 1699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701
This theorem is referenced by:  sb5f  2374
  Copyright terms: Public domain W3C validator