Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbvexiw Structured version   Visualization version   GIF version

Theorem bj-cbvexiw 31846
Description: Change bound variable. This is to cbvexvw 1957 what cbvaliw 1920 is to cbvalvw 1956. [TODO: move after cbvalivw 1921]. (Contributed by BJ, 17-Mar-2020.)
Hypotheses
Ref Expression
bj-cbvexiw.1 (∃𝑥𝑦𝜓 → ∃𝑦𝜓)
bj-cbvexiw.2 (𝜑 → ∀𝑦𝜑)
bj-cbvexiw.3 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
bj-cbvexiw (∃𝑥𝜑 → ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem bj-cbvexiw
StepHypRef Expression
1 bj-cbvexiw.1 . 2 (∃𝑥𝑦𝜓 → ∃𝑦𝜓)
2 bj-cbvexiw.2 . . 3 (𝜑 → ∀𝑦𝜑)
3 bj-cbvexiw.3 . . 3 (𝑦 = 𝑥 → (𝜑𝜓))
42, 3spimeh 1912 . 2 (𝜑 → ∃𝑦𝜓)
51, 4bj-exlime 31796 1 (∃𝑥𝜑 → ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-6 1875
This theorem depends on definitions:  df-bi 196  df-ex 1696
This theorem is referenced by:  bj-cbvexivw  31847  bj-cbvexw  31851
  Copyright terms: Public domain W3C validator