Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbntg Structured version   Visualization version   GIF version

Theorem hbntg 30955
Description: A more general form of hbnt 2129. (Contributed by Scott Fenton, 13-Dec-2010.)
Assertion
Ref Expression
hbntg (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑))

Proof of Theorem hbntg
StepHypRef Expression
1 axc7 2117 . . 3 (¬ ∀𝑥 ¬ ∀𝑥𝜓𝜓)
21con1i 143 . 2 𝜓 → ∀𝑥 ¬ ∀𝑥𝜓)
3 con3 148 . . 3 ((𝜑 → ∀𝑥𝜓) → (¬ ∀𝑥𝜓 → ¬ 𝜑))
43al2imi 1733 . 2 (∀𝑥(𝜑 → ∀𝑥𝜓) → (∀𝑥 ¬ ∀𝑥𝜓 → ∀𝑥 ¬ 𝜑))
52, 4syl5 33 1 (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-ex 1696
This theorem is referenced by:  hbimtg  30956  hbng  30958
  Copyright terms: Public domain W3C validator