MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc7 Structured version   Visualization version   GIF version

Theorem axc7 2117
Description: Show that the original axiom ax-c7 33188 can be derived from ax-10 2006 (hbn1 2007) , sp 2041 and propositional calculus. See ax10fromc7 33198 for the rederivation of ax-10 2006 from ax-c7 33188.

Normally, axc7 2117 should be used rather than ax-c7 33188, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.)

Assertion
Ref Expression
axc7 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)

Proof of Theorem axc7
StepHypRef Expression
1 sp 2041 . 2 (∀𝑥𝜑𝜑)
2 hbn1 2007 . 2 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
31, 2nsyl4 155 1 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-ex 1696
This theorem is referenced by:  modal-b  2127  axc10  2240  hbntg  30955  bj-modalb  31893  bj-axc10v  31904  axc5c4c711  37624  hbntal  37790
  Copyright terms: Public domain W3C validator