MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc10 Structured version   Visualization version   GIF version

Theorem axc10 2239
Description: Show that the original axiom ax-c10 32985 can be derived from ax6 2238 and others. See ax6fromc10 32995 for the rederivation of ax6 2238 from ax-c10 32985.

Normally, axc10 2239 should be used rather than ax-c10 32985, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.)

Assertion
Ref Expression
axc10 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem axc10
StepHypRef Expression
1 ax6 2238 . . 3 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
2 con3 147 . . . 4 ((𝑥 = 𝑦 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝑥 = 𝑦))
32al2imi 1732 . . 3 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝑥 = 𝑦))
41, 3mtoi 188 . 2 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → ¬ ∀𝑥 ¬ ∀𝑥𝜑)
5 axc7 2116 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
64, 5syl 17 1 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-12 2033  ax-13 2233
This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator