 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc10 Structured version   Visualization version   GIF version

Theorem axc10 2240
 Description: Show that the original axiom ax-c10 33189 can be derived from ax6 2239 and others. See ax6fromc10 33199 for the rederivation of ax6 2239 from ax-c10 33189. Normally, axc10 2240 should be used rather than ax-c10 33189, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.)
Assertion
Ref Expression
axc10 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem axc10
StepHypRef Expression
1 ax6 2239 . . 3 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
2 con3 148 . . . 4 ((𝑥 = 𝑦 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝑥 = 𝑦))
32al2imi 1733 . . 3 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝑥 = 𝑦))
41, 3mtoi 189 . 2 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → ¬ ∀𝑥 ¬ ∀𝑥𝜑)
5 axc7 2117 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
64, 5syl 17 1 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator