Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23bi Structured version   Visualization version   GIF version

Theorem 19.23bi 2049
 Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2067. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.23bi.1 (∃𝑥𝜑𝜓)
Assertion
Ref Expression
19.23bi (𝜑𝜓)

Proof of Theorem 19.23bi
StepHypRef Expression
1 19.8a 2039 . 2 (𝜑 → ∃𝑥𝜑)
2 19.23bi.1 . 2 (∃𝑥𝜑𝜓)
31, 2syl 17 1 (𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696 This theorem is referenced by:  equs5eALT  2166  equs5e  2337  mo2v  2465  2mo  2539  copsexg  4882  axreg2  8381  hash1to3  13128  ustuqtop4  21858  f1omptsnlem  32359  mptsnunlem  32361
 Copyright terms: Public domain W3C validator