Step | Hyp | Ref
| Expression |
1 | | df-ssb 31809 |
. 2
⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
2 | | 19.23v 1889 |
. . . . . . 7
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜑)) |
3 | | ax6ev 1877 |
. . . . . . . . 9
⊢
∃𝑥 𝑥 = 𝑦 |
4 | | pm2.27 41 |
. . . . . . . . 9
⊢
(∃𝑥 𝑥 = 𝑦 → ((∃𝑥 𝑥 = 𝑦 → 𝜑) → 𝜑)) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . 8
⊢
((∃𝑥 𝑥 = 𝑦 → 𝜑) → 𝜑) |
6 | | ax-1 6 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑥 𝑥 = 𝑦 → 𝜑)) |
7 | 5, 6 | impbii 198 |
. . . . . . 7
⊢
((∃𝑥 𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
8 | 2, 7 | bitri 263 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
9 | 8 | imbi2i 325 |
. . . . 5
⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → 𝜑)) |
10 | 9 | albii 1737 |
. . . 4
⊢
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → 𝜑)) |
11 | | 19.23v 1889 |
. . . 4
⊢
(∀𝑦(𝑦 = 𝑡 → 𝜑) ↔ (∃𝑦 𝑦 = 𝑡 → 𝜑)) |
12 | 10, 11 | bitri 263 |
. . 3
⊢
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (∃𝑦 𝑦 = 𝑡 → 𝜑)) |
13 | | ax6ev 1877 |
. . . . 5
⊢
∃𝑦 𝑦 = 𝑡 |
14 | | pm2.27 41 |
. . . . 5
⊢
(∃𝑦 𝑦 = 𝑡 → ((∃𝑦 𝑦 = 𝑡 → 𝜑) → 𝜑)) |
15 | 13, 14 | ax-mp 5 |
. . . 4
⊢
((∃𝑦 𝑦 = 𝑡 → 𝜑) → 𝜑) |
16 | | ax-1 6 |
. . . 4
⊢ (𝜑 → (∃𝑦 𝑦 = 𝑡 → 𝜑)) |
17 | 15, 16 | impbii 198 |
. . 3
⊢
((∃𝑦 𝑦 = 𝑡 → 𝜑) ↔ 𝜑) |
18 | 12, 17 | bitri 263 |
. 2
⊢
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ 𝜑) |
19 | 1, 18 | bitri 263 |
1
⊢ ([𝑡/𝑥]b𝜑 ↔ 𝜑) |