Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbsb3t Structured version   Visualization version   GIF version

Theorem bj-hbsb3t 31899
Description: A theorem close to a closed form of hbsb3 2352. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-hbsb3t (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))

Proof of Theorem bj-hbsb3t
StepHypRef Expression
1 spsbim 2382 . 2 (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑))
2 hbsb2a 2349 . 2 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
31, 2syl6 34 1 (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  [wsb 1867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868
This theorem is referenced by:  bj-hbsb3  31900  bj-nfs1t  31901
  Copyright terms: Public domain W3C validator