Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbvexivw Structured version   Visualization version   GIF version

Theorem bj-cbvexivw 31847
Description: Change bound variable. This is to cbvexvw 1957 what cbvalivw 1921 is to cbvalvw 1956. [TODO: move after cbvalivw 1921]. (Contributed by BJ, 17-Mar-2020.)
Hypothesis
Ref Expression
bj-cbvexivw.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
bj-cbvexivw (∃𝑥𝜑 → ∃𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem bj-cbvexivw
StepHypRef Expression
1 ax5e 1829 . 2 (∃𝑥𝑦𝜓 → ∃𝑦𝜓)
2 ax-5 1827 . 2 (𝜑 → ∀𝑦𝜑)
3 bj-cbvexivw.1 . 2 (𝑦 = 𝑥 → (𝜑𝜓))
41, 2, 3bj-cbvexiw 31846 1 (∃𝑥𝜑 → ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875
This theorem depends on definitions:  df-bi 196  df-ex 1696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator