Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spimevw Structured version   Visualization version   GIF version

Theorem bj-spimevw 31844
Description: Existential introduction, using implicit substitution. This is to spimeh 1912 what spimvw 1914 is to spimw 1913. (Contributed by BJ, 17-Mar-2020.)
Hypothesis
Ref Expression
bj-spimevw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-spimevw (𝜑 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem bj-spimevw
StepHypRef Expression
1 ax-5 1827 . 2 (𝜑 → ∀𝑥𝜑)
2 bj-spimevw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spimeh 1912 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875
This theorem depends on definitions:  df-bi 196  df-ex 1696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator