Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfv Structured version   Visualization version   GIF version

Theorem bj-nfv 31806
Description: A non-occurring variable is semantically non-free. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
bj-nfv ℲℲ𝑥𝜑
Distinct variable group:   𝜑,𝑥

Proof of Theorem bj-nfv
StepHypRef Expression
1 bj-ax5ea 31805 . 2 (∃𝑥𝜑 → ∀𝑥𝜑)
2 df-bj-nf 31765 . 2 (ℲℲ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
31, 2mpbir 220 1 ℲℲ𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wex 1695  ℲℲwnff 31764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-5 1827
This theorem depends on definitions:  df-bi 196  df-ex 1696  df-bj-nf 31765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator