Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc11n11 Structured version   Visualization version   GIF version

Theorem axc11n11 31859
 Description: Proof of axc11n 2295 from { ax-1 6-- ax-7 1922, axc11 2302 } . Almost identical to axc11nfromc11 33229. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
axc11n11 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem axc11n11
StepHypRef Expression
1 axc11 2302 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦))
21pm2.43i 50 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)
3 equcomi 1931 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
42, 3sylg 1740 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator