 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axext4 Structured version   Visualization version   GIF version

Theorem axext4 2594
 Description: A bidirectional version of Extensionality. Although this theorem "looks" like it is just a definition of equality, it requires the Axiom of Extensionality for its proof under our axiomatization. See the comments for ax-ext 2590 and df-cleq 2603. (Contributed by NM, 14-Nov-2008.)
Assertion
Ref Expression
axext4 (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem axext4
StepHypRef Expression
1 elequ2 1991 . . 3 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21alrimiv 1842 . 2 (𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦))
3 axext3 2592 . 2 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
42, 3impbii 198 1 (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by:  axc11next  37629
 Copyright terms: Public domain W3C validator