Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ssbbii | Structured version Visualization version GIF version |
Description: Biconditional property for substitution. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
bj-ssbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bj-ssbbii | ⊢ ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ssbbi 31811 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓)) | |
2 | bj-ssbbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1715 | 1 ⊢ ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 [wssb 31808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 |
This theorem depends on definitions: df-bi 196 df-ssb 31809 |
This theorem is referenced by: bj-ssbssblem 31838 bj-ssbcom3lem 31839 |
Copyright terms: Public domain | W3C validator |