Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbbii Structured version   Visualization version   GIF version

Theorem bj-ssbbii 31813
Description: Biconditional property for substitution. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.)
Hypothesis
Ref Expression
bj-ssbbii.1 (𝜑𝜓)
Assertion
Ref Expression
bj-ssbbii ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓)

Proof of Theorem bj-ssbbii
StepHypRef Expression
1 bj-ssbbi 31811 . 2 (∀𝑥(𝜑𝜓) → ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓))
2 bj-ssbbii.1 . 2 (𝜑𝜓)
31, 2mpg 1715 1 ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 195  [wssb 31808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827
This theorem depends on definitions:  df-bi 196  df-ssb 31809
This theorem is referenced by:  bj-ssbssblem  31838  bj-ssbcom3lem  31839
  Copyright terms: Public domain W3C validator