Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem23 Structured version   Visualization version   GIF version

Theorem etransclem23 39150
Description: This is the claim proof in [Juillerat] p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem23.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem23.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem23.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
etransclem23.p (𝜑𝑃 ∈ ℕ)
etransclem23.m (𝜑𝑀 ∈ ℕ)
etransclem23.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem23.lt1 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
Assertion
Ref Expression
etransclem23 (𝜑 → (abs‘𝐾) < 1)
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗)

Proof of Theorem etransclem23
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem23.k . . . . . 6 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
2 etransclem23.l . . . . . . 7 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
32oveq1i 6559 . . . . . 6 (𝐿 / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
41, 3eqtri 2632 . . . . 5 𝐾 = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
54fveq2i 6106 . . . 4 (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1))))
65a1i 11 . . 3 (𝜑 → (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))))
7 fzfid 12634 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
8 etransclem23.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℤ)
98adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
10 elfznn0 12302 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
1110adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
129, 11ffvelrnd 6268 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
1312zcnd 11359 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
14 ere 14658 . . . . . . . . . 10 e ∈ ℝ
1514recni 9931 . . . . . . . . 9 e ∈ ℂ
1615a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
17 elfzelz 12213 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
1817zcnd 11359 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
1918adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2016, 19cxpcld 24254 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
2113, 20mulcld 9939 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
2215a1i 11 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℂ)
23 elioore 12076 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℝ)
2423recnd 9947 . . . . . . . . . . 11 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℂ)
2524adantl 481 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℂ)
2625negcld 10258 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℂ)
2722, 26cxpcld 24254 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℂ)
28 ax-resscn 9872 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
30 etransclem23.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
31 etransclem23.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
3229, 30, 31etransclem8 39135 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℂ)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝐹:ℝ⟶ℂ)
3423adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
3533, 34ffvelrnd 6268 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3635adantlr 747 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3727, 36mulcld 9939 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
38 reelprrecn 9907 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ {ℝ, ℂ})
40 reopn 38442 . . . . . . . . . 10 ℝ ∈ (topGen‘ran (,))
41 eqid 2610 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241tgioo2 22414 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4340, 42eleqtri 2686 . . . . . . . . 9 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
4443a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4530adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
46 etransclem23.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
4746nnnn0d 11228 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
4847adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℕ0)
49 etransclem6 39133 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
50 etransclem6 39133 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
5131, 49, 503eqtri 2636 . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
52 0red 9920 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ)
5317zred 11358 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
5453adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℝ)
5539, 44, 45, 48, 51, 52, 54etransclem18 39145 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
5637, 55itgcl 23356 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥 ∈ ℂ)
5721, 56mulcld 9939 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
587, 57fsumcl 14311 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
59 nnm1nn0 11211 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
6030, 59syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6160faccld 12933 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6261nncnd 10913 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6361nnne0d 10942 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6458, 62, 63absdivd 14042 . . 3 (𝜑 → (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))))
6561nnred 10912 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ)
6661nnnn0d 11228 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ0)
6766nn0ge0d 11231 . . . . 5 (𝜑 → 0 ≤ (!‘(𝑃 − 1)))
6865, 67absidd 14009 . . . 4 (𝜑 → (abs‘(!‘(𝑃 − 1))) = (!‘(𝑃 − 1)))
6968oveq2d 6565 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
706, 64, 693eqtrd 2648 . 2 (𝜑 → (abs‘𝐾) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
712, 58syl5eqel 2692 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
7271, 62, 63divcld 10680 . . . . . 6 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) ∈ ℂ)
731, 72syl5eqel 2692 . . . . 5 (𝜑𝐾 ∈ ℂ)
7473abscld 14023 . . . 4 (𝜑 → (abs‘𝐾) ∈ ℝ)
7570, 74eqeltrrd 2689 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ∈ ℝ)
7646nnred 10912 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
7730nnnn0d 11228 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ0)
7876, 77reexpcld 12887 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝑃) ∈ ℝ)
79 peano2nn0 11210 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
8047, 79syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 + 1) ∈ ℕ0)
8178, 80reexpcld 12887 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
8281recnd 9947 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
8346nncnd 10913 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
8482, 83mulcomd 9940 . . . . . . . . . . . 12 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))))
8530nncnd 10913 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℂ)
86 1cnd 9935 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
8785, 86npcand 10275 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8887eqcomd 2616 . . . . . . . . . . . . . . 15 (𝜑𝑃 = ((𝑃 − 1) + 1))
8988oveq2d 6565 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)))
9080nn0cnd 11230 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℂ)
9190, 85mulcomd 9940 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1) · 𝑃) = (𝑃 · (𝑀 + 1)))
9291oveq2d 6565 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = (𝑀↑(𝑃 · (𝑀 + 1))))
9383, 77, 80expmuld 12873 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = ((𝑀↑(𝑀 + 1))↑𝑃))
9483, 80, 77expmuld 12873 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑃 · (𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
9592, 93, 943eqtr3d 2652 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
9676, 80reexpcld 12887 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
9796recnd 9947 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
9897, 60expp1d 12871 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
9989, 95, 983eqtr3d 2652 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
10099oveq2d 6565 . . . . . . . . . . . 12 (𝜑 → (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))) = (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))))
10197, 60expcld 12870 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
10283, 101, 97mul12d 10124 . . . . . . . . . . . . 13 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))))
10383, 97mulcld 9939 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
104101, 103mulcomd 9940 . . . . . . . . . . . . 13 (𝜑 → (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
105102, 104eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
10684, 100, 1053eqtrd 2648 . . . . . . . . . . 11 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
107106adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
108107oveq2d 6565 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
10921abscld 14023 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
110109recnd 9947 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
111103adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
112101adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
113110, 111, 112mulassd 9942 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
114108, 113eqtr4d 2647 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
115114sumeq2dv 14281 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
116110, 111mulcld 9939 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
1177, 101, 116fsummulc1 14359 . . . . . . 7 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
118115, 117eqtr4d 2647 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
119118oveq1d 6564 . . . . 5 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))))
1207, 116fsumcl 14311 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
121120, 101, 62, 63divassd 10715 . . . . 5 (𝜑 → ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
122119, 121eqtrd 2644 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
12381adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
12476adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
125123, 124remulcld 9949 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) ∈ ℝ)
126109, 125remulcld 9949 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
1277, 126fsumrecl 14312 . . . . 5 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
128127, 61nndivred 10946 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) ∈ ℝ)
129122, 128eqeltrrd 2689 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) ∈ ℝ)
130 1red 9934 . . 3 (𝜑 → 1 ∈ ℝ)
13158abscld 14023 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
13261nnrpd 11746 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ+)
13357abscld 14023 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1347, 133fsumrecl 14312 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1357, 57fsumabs 14374 . . . . . 6 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
13681ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
137 ioombl 23140 . . . . . . . . . . . 12 (0(,)𝑗) ∈ dom vol
138137a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (0(,)𝑗) ∈ dom vol)
139 0red 9920 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ∈ ℝ)
140 elfzle1 12215 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
141 volioo 38840 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 0 ≤ 𝑗) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
142139, 53, 140, 141syl3anc 1318 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
14353, 139resubcld 10337 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) ∈ ℝ)
144142, 143eqeltrd 2688 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ∈ ℝ)
145144adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ∈ ℝ)
14682adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
147 iblconstmpt 38847 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
148138, 145, 146, 147syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
149136, 148itgrecl 23370 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ∈ ℝ)
150109, 149remulcld 9949 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
1517, 150fsumrecl 14312 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
15221, 56absmuld 14041 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
15356abscld 14023 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℝ)
15421absge0d 14031 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ (abs‘((𝐴𝑗) · (e↑𝑐𝑗))))
15537abscld 14023 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ℝ)
15637, 55iblabs 23401 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ (abs‘((e↑𝑐-𝑥) · (𝐹𝑥)))) ∈ 𝐿1)
157155, 156itgrecl 23370 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ∈ ℝ)
15837, 55itgabs 23407 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥)
15927, 36absmuld 14041 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) = ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))))
16027abscld 14023 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ∈ ℝ)
161 1red 9934 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
16236abscld 14023 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ∈ ℝ)
16327absge0d 14031 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(e↑𝑐-𝑥)))
16436absge0d 14031 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(𝐹𝑥)))
16514a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → e ∈ ℝ)
166 0re 9919 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
167 epos 14774 . . . . . . . . . . . . . . . . . . . . . 22 0 < e
168166, 14, 167ltleii 10039 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ e
169168a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → 0 ≤ e)
17023renegcld 10336 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → -𝑥 ∈ ℝ)
171165, 169, 170recxpcld 24269 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → (e↑𝑐-𝑥) ∈ ℝ)
172165, 169, 170cxpge0d 24270 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → 0 ≤ (e↑𝑐-𝑥))
173171, 172absidd 14009 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0(,)𝑗) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
174173adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
175171adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℝ)
176 1red 9934 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
177 0xr 9965 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
178177a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ*)
17953rexrd 9968 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ*)
180179adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ*)
181 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ (0(,)𝑗))
182 ioogtlb 38564 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
183178, 180, 181, 182syl3anc 1318 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
18423adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
185184lt0neg2d 10477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (0 < 𝑥 ↔ -𝑥 < 0))
186183, 185mpbid 221 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 < 0)
18714a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℝ)
188 1lt2 11071 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 2
189 egt2lt3 14773 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
190189simpli 473 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
191 1re 9918 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
192 2re 10967 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
193191, 192, 14lttri 10042 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 < 2 ∧ 2 < e) → 1 < e)
194188, 190, 193mp2an 704 . . . . . . . . . . . . . . . . . . . . . 22 1 < e
195194a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 < e)
196170adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℝ)
197 0red 9920 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ)
198187, 195, 196, 197cxpltd 24265 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (-𝑥 < 0 ↔ (e↑𝑐-𝑥) < (e↑𝑐0)))
199186, 198mpbid 221 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < (e↑𝑐0))
200 cxp0 24216 . . . . . . . . . . . . . . . . . . . 20 (e ∈ ℂ → (e↑𝑐0) = 1)
20115, 200mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐0) = 1)
202199, 201breqtrd 4609 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < 1)
203175, 176, 202ltled 10064 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ≤ 1)
204174, 203eqbrtrd 4605 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
205204adantll 746 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
20628a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ℝ ⊆ ℂ)
20730ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑃 ∈ ℕ)
20847ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℕ0)
20931, 49eqtri 2632 . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
21023adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
211206, 207, 208, 209, 210etransclem13 39140 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) = ∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)))
212211fveq2d 6107 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
213 nn0uz 11598 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
21423adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℝ)
215 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℝ)
216215adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℝ)
217214, 216resubcld 10337 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
218217adantll 746 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
21960, 77ifcld 4081 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
220219ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
221218, 220reexpcld 12887 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
222221recnd 9947 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
223213, 208, 222fprodabs 14543 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
224 elfznn0 12302 . . . . . . . . . . . . . . . . . . . 20 ( ∈ (0...𝑀) → ∈ ℕ0)
22524adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℂ)
226 nn0cn 11179 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℂ)
227226adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℂ)
228225, 227subcld 10271 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
229228adantll 746 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
230224, 229sylan2 490 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
231219ad3antrrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
232230, 231absexpd 14039 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
233232prodeq2dv 14492 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
234212, 223, 2333eqtrd 2648 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
235 nfv 1830 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗))
236 fzfid 12634 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (0...𝑀) ∈ Fin)
237224, 228sylan2 490 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
238237abscld 14023 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
239238adantll 746 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
240239, 231reexpcld 12887 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
241237absge0d 14031 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
242241adantll 746 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
243239, 231, 242expge0d 12888 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
24478ad3antrrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀𝑃) ∈ ℝ)
24576ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
246245, 231reexpcld 12887 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
247224, 218sylan2 490 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℝ)
24824adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
249224, 227sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → ∈ ℂ)
250248, 249negsubdi2d 10287 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
251250adantll 746 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
252224adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℕ0)
253252nn0red 11229 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℝ)
254 0red 9920 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ∈ ℝ)
255210adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℝ)
256 elfzle2 12216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0...𝑀) → 𝑀)
257256adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀)
258197, 184, 183ltled 10064 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
259258adantll 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
260259adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ 𝑥)
261253, 254, 245, 255, 257, 260le2subd 10526 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
26283subid1d 10260 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑀 − 0) = 𝑀)
263262ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀 − 0) = 𝑀)
264261, 263breqtrd 4609 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
265251, 264eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) ≤ 𝑀)
266247, 245, 265lenegcon1d 10488 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -𝑀 ≤ (𝑥))
267 elfzel2 12211 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
268267zred 11358 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
269268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℝ)
27053adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ)
271 iooltub 38582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
272178, 180, 181, 271syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
273 elfzle2 12216 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
274273adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗𝑀)
275184, 270, 269, 272, 274ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑀)
276184, 269, 275ltled 10064 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
277276adantll 746 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
278277adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥𝑀)
279252nn0ge0d 11231 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ )
280255, 254, 245, 253, 278, 279le2subd 10526 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
281280, 263breqtrd 4609 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
282247, 245absled 14017 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥)) ≤ 𝑀 ↔ (-𝑀 ≤ (𝑥) ∧ (𝑥) ≤ 𝑀)))
283266, 281, 282mpbir2and 959 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ≤ 𝑀)
284 leexp1a 12781 . . . . . . . . . . . . . . . . . . . 20 ((((abs‘(𝑥)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) ∧ (0 ≤ (abs‘(𝑥)) ∧ (abs‘(𝑥)) ≤ 𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
285239, 245, 231, 242, 283, 284syl32anc 1326 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
28646nnge1d 10940 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝑀)
287286ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 1 ≤ 𝑀)
288219nn0zd 11356 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
28977nn0zd 11356 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℤ)
290 iftrue 4042 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 0 → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
291290adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
29230nnred 10912 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ∈ ℝ)
293292lem1d 10836 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑃 − 1) ≤ 𝑃)
294293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → (𝑃 − 1) ≤ 𝑃)
295291, 294eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
296 iffalse 4045 . . . . . . . . . . . . . . . . . . . . . . . . 25 = 0 → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
297296adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
298292leidd 10473 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃𝑃)
299298adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → 𝑃𝑃)
300297, 299eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
301295, 300pm2.61dan 828 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
302 eluz2 11569 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)) ↔ (if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃))
303288, 289, 301, 302syl3anbrc 1239 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
304303ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
305245, 287, 304leexp2ad 12903 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
306240, 246, 244, 285, 305letrd 10073 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
307235, 236, 240, 243, 244, 306fprodle 14566 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ∏ ∈ (0...𝑀)(𝑀𝑃))
30878recnd 9947 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀𝑃) ∈ ℂ)
309 fprodconst 14547 . . . . . . . . . . . . . . . . . . . 20 (((0...𝑀) ∈ Fin ∧ (𝑀𝑃) ∈ ℂ) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(#‘(0...𝑀))))
3107, 308, 309syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(#‘(0...𝑀))))
311 hashfz0 13079 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (#‘(0...𝑀)) = (𝑀 + 1))
31247, 311syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (#‘(0...𝑀)) = (𝑀 + 1))
313312oveq2d 6565 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑀𝑃)↑(#‘(0...𝑀))) = ((𝑀𝑃)↑(𝑀 + 1)))
314310, 313eqtrd 2644 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
315314ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
316307, 315breqtrd 4609 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
317234, 316eqbrtrd 4605 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
318160, 161, 162, 136, 163, 164, 205, 317lemul12ad 10845 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ (1 · ((𝑀𝑃)↑(𝑀 + 1))))
31982mulid2d 9937 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
320319ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
321318, 320breqtrd 4609 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
322159, 321eqbrtrd 4605 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
323156, 148, 155, 136, 322itgle 23382 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
324153, 157, 149, 158, 323letrd 10073 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
325153, 149, 109, 154, 324lemul2ad 10843 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
326152, 325eqbrtrd 4605 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
3277, 133, 150, 326fsumle 14372 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
328 itgconst 23391 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
329138, 145, 146, 328syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
33047nn0ge0d 11231 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑀)
33176, 77, 330expge0d 12888 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (𝑀𝑃))
33278, 80, 331expge0d 12888 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
333332adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
33418subid1d 10260 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) = 𝑗)
335142, 334eqtrd 2644 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = 𝑗)
336335, 273eqbrtrd 4605 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ≤ 𝑀)
337336adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ≤ 𝑀)
338145, 124, 123, 333, 337lemul2ad 10843 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))) ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
339329, 338eqbrtrd 4605 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
340149, 125, 109, 154, 339lemul2ad 10843 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
3417, 150, 126, 340fsumle 14372 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
342134, 151, 127, 327, 341letrd 10073 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
343131, 134, 127, 135, 342letrd 10073 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
344131, 127, 132, 343lediv1dd 11806 . . . 4 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))))
345344, 122breqtrd 4609 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
346 etransclem23.lt1 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
34775, 129, 130, 345, 346lelttrd 10074 . 2 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) < 1)
34870, 347eqbrtrd 4605 1 (𝜑 → (abs‘𝐾) < 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wss 3540  ifcif 4036  {cpr 4127   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  0cn0 11169  cz 11254  cuz 11563  (,)cioo 12046  ...cfz 12197  cexp 12722  !cfa 12922  #chash 12979  abscabs 13822  Σcsu 14264  cprod 14474  eceu 14632  t crest 15904  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  volcvol 23039  𝐿1cibl 23192  citg 23193  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-prod 14475  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  etransclem47  39174
  Copyright terms: Public domain W3C validator