MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgle Structured version   Visualization version   GIF version

Theorem itgle 23382
Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itgle.1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgle.2 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
itgle.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgle.4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgle.5 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
itgle (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgle
StepHypRef Expression
1 itgle.1 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 itgle.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32iblrelem 23363 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)))
41, 3mpbid 221 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))
54simp2d 1067 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
6 itgle.2 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 itgle.4 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
87iblrelem 23363 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)))
96, 8mpbid 221 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ))
109simp3d 1068 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)
119simp2d 1067 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
124simp3d 1068 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)
132ad2ant2r 779 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
1413rexrd 9968 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ*)
15 simprr 792 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
16 elxrge0 12152 . . . . . . 7 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
1714, 15, 16sylanbrc 695 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ (0[,]+∞))
18 0e0iccpnf 12154 . . . . . . 7 0 ∈ (0[,]+∞)
1918a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈ (0[,]+∞))
2017, 19ifclda 4070 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,]+∞))
21 eqid 2610 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))
2220, 21fmptd 6292 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞))
237ad2ant2r 779 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ)
2423rexrd 9968 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
25 simprr 792 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
26 elxrge0 12152 . . . . . . 7 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶))
2724, 25, 26sylanbrc 695 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ (0[,]+∞))
2818a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ∈ (0[,]+∞))
2927, 28ifclda 4070 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,]+∞))
30 eqid 2610 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
3129, 30fmptd 6292 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞))
32 0re 9919 . . . . . . . . . . . 12 0 ∈ ℝ
33 max1 11890 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3432, 7, 33sylancr 694 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
35 ifcl 4080 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
367, 32, 35sylancl 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
37 itgle.5 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝐶)
38 max2 11892 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3932, 7, 38sylancr 694 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
402, 7, 36, 37, 39letrd 10073 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4132a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ∈ ℝ)
42 maxle 11896 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4341, 2, 36, 42syl3anc 1318 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4434, 40, 43mpbir2and 959 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0))
45 iftrue 4042 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
4645adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
47 iftrue 4042 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4847adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4944, 46, 483brtr4d 4615 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
5049ex 449 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)))
51 0le0 10987 . . . . . . . . . 10 0 ≤ 0
5251a1i 11 . . . . . . . . 9 𝑥𝐴 → 0 ≤ 0)
53 iffalse 4045 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = 0)
54 iffalse 4045 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = 0)
5552, 53, 543brtr4d 4615 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
5650, 55pm2.61d1 170 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
57 ifan 4084 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
58 ifan 4084 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)
5956, 57, 583brtr4g 4617 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
6059ralrimivw 2950 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
61 reex 9906 . . . . . . 7 ℝ ∈ V
6261a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
63 eqidd 2611 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)))
64 eqidd 2611 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6562, 20, 29, 63, 64ofrfval2 6813 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6660, 65mpbird 246 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
67 itg2le 23312 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
6822, 31, 66, 67syl3anc 1318 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
697renegcld 10336 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐶 ∈ ℝ)
7069ad2ant2r 779 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ)
7170rexrd 9968 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ*)
72 simprr 792 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ≤ -𝐶)
73 elxrge0 12152 . . . . . . 7 (-𝐶 ∈ (0[,]+∞) ↔ (-𝐶 ∈ ℝ* ∧ 0 ≤ -𝐶))
7471, 72, 73sylanbrc 695 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ (0[,]+∞))
7518a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ∈ (0[,]+∞))
7674, 75ifclda 4070 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ∈ (0[,]+∞))
77 eqid 2610 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))
7876, 77fmptd 6292 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞))
792renegcld 10336 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
8079ad2ant2r 779 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ)
8180rexrd 9968 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ*)
82 simprr 792 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵)
83 elxrge0 12152 . . . . . . 7 (-𝐵 ∈ (0[,]+∞) ↔ (-𝐵 ∈ ℝ* ∧ 0 ≤ -𝐵))
8481, 82, 83sylanbrc 695 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ (0[,]+∞))
8518a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ∈ (0[,]+∞))
8684, 85ifclda 4070 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) ∈ (0[,]+∞))
87 eqid 2610 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
8886, 87fmptd 6292 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞))
89 max1 11890 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9032, 79, 89sylancr 694 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
91 ifcl 4080 . . . . . . . . . . . . 13 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
9279, 32, 91sylancl 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
932, 7lenegd 10485 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶 ↔ -𝐶 ≤ -𝐵))
9437, 93mpbid 221 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐶 ≤ -𝐵)
95 max2 11892 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9632, 79, 95sylancr 694 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9769, 79, 92, 94, 96letrd 10073 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))
98 maxle 11896 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐶 ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
9941, 69, 92, 98syl3anc 1318 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
10090, 97, 99mpbir2and 959 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0))
101 iftrue 4042 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
102101adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
103 iftrue 4042 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
104103adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
105100, 102, 1043brtr4d 4615 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
106105ex 449 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)))
107 iffalse 4045 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = 0)
108 iffalse 4045 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = 0)
10952, 107, 1083brtr4d 4615 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
110106, 109pm2.61d1 170 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
111 ifan 4084 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) = if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0)
112 ifan 4084 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)
113110, 111, 1123brtr4g 4617 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
114113ralrimivw 2950 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
115 eqidd 2611 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))
116 eqidd 2611 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
11762, 76, 86, 115, 116ofrfval2 6813 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
118114, 117mpbird 246 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
119 itg2le 23312 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
12078, 88, 118, 119syl3anc 1318 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
1215, 10, 11, 12, 68, 120le2subd 10526 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ≤ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
1222, 1itgrevallem1 23367 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))))
1237, 6itgrevallem1 23367 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
124121, 122, 1233brtr4d 4615 1 (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  ifcif 4036   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  𝑟 cofr 6794  cr 9814  0cc0 9815  +∞cpnf 9950  *cxr 9952  cle 9954  cmin 10145  -cneg 10146  [,]cicc 12049  MblFncmbf 23189  2citg2 23191  𝐿1cibl 23192  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243
This theorem is referenced by:  itgge0  23383  itgless  23389  itgabs  23407  itgulm  23966  itgabsnc  32649  wallispilem1  38958  fourierdlem47  39046  fourierdlem87  39086  etransclem23  39150
  Copyright terms: Public domain W3C validator