Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem87 Structured version   Visualization version   GIF version

Theorem fourierdlem87 39086
 Description: The integral of 𝐺 goes uniformly ( with respect to 𝑛) to zero if the measure of the domain of integration goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem87.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem87.x (𝜑𝑋 ∈ ℝ)
fourierdlem87.y (𝜑𝑌 ∈ ℝ)
fourierdlem87.w (𝜑𝑊 ∈ ℝ)
fourierdlem87.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem87.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem87.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem87.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem87.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem87.10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
fourierdlem87.gibl ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
fourierdlem87.d 𝐷 = ((𝑒 / 3) / 𝑎)
fourierdlem87.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
Assertion
Ref Expression
fourierdlem87 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Distinct variable groups:   𝐷,𝑑,𝑛,𝑢   𝐺,𝑎,𝑑,𝑠,𝑢   𝐾,𝑎,𝑠   𝑈,𝑎,𝑛   𝑈,𝑘,𝑛   𝑥,𝑈,𝑎   𝑒,𝑎,𝑑,𝑛,𝑢   𝜑,𝑎,𝑑,𝑛,𝑠,𝑢   𝜒,𝑠   𝑒,𝑘,𝑢   𝑘,𝑠   𝜑,𝑥,𝑠
Allowed substitution hints:   𝜑(𝑒,𝑘)   𝜒(𝑥,𝑢,𝑒,𝑘,𝑛,𝑎,𝑑)   𝐷(𝑥,𝑒,𝑘,𝑠,𝑎)   𝑆(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑈(𝑢,𝑒,𝑠,𝑑)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐺(𝑥,𝑒,𝑘,𝑛)   𝐻(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐾(𝑥,𝑢,𝑒,𝑘,𝑛,𝑑)   𝑊(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑋(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑌(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)

Proof of Theorem fourierdlem87
StepHypRef Expression
1 fourierdlem87.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem87.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem87.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
4 fourierdlem87.w . . . . . 6 (𝜑𝑊 ∈ ℝ)
5 fourierdlem87.h . . . . . 6 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6 fourierdlem87.k . . . . . 6 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
7 fourierdlem87.u . . . . . 6 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
8 fourierdlem87.10 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
91, 2, 3, 4, 5, 6, 7, 8fourierdlem77 39076 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
10 nfv 1830 . . . . . . . . . . 11 𝑠(𝜑𝑎 ∈ ℝ+)
11 nfra1 2925 . . . . . . . . . . 11 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎
1210, 11nfan 1816 . . . . . . . . . 10 𝑠((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
13 nfv 1830 . . . . . . . . . 10 𝑠 𝑛 ∈ ℕ
1412, 13nfan 1816 . . . . . . . . 9 𝑠(((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ)
15 simp-4l 802 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
16 simp-4r 803 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ+)
17 simplr 788 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑛 ∈ ℕ)
1815, 16, 17jca31 555 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ))
19 simpr 476 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
20 simpllr 795 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
21 rspa 2914 . . . . . . . . . . . 12 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
2220, 19, 21syl2anc 691 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
23 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
241, 2, 3, 4, 5, 6, 7fourierdlem55 39054 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑈:(-π[,]π)⟶ℝ)
2524ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
2625adantlr 747 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
27 nnre 10904 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
28 fourierdlem87.s . . . . . . . . . . . . . . . . . . . . . . 23 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2928fourierdlem5 39005 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
3130ad2antlr 759 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑆:(-π[,]π)⟶ℝ)
3231, 23ffvelrnd 6268 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) ∈ ℝ)
3326, 32remulcld 9949 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
34 fourierdlem87.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3534fvmpt2 6200 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
3623, 33, 35syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
37 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
38 halfre 11123 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 / 2) ∈ ℝ
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → (1 / 2) ∈ ℝ)
4027, 39readdcld 9948 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
42 pire 24014 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ
4342renegcli 10221 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ ℝ
44 iccssre 12126 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4543, 42, 44mp2an 704 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π[,]π) ⊆ ℝ
4645sseli 3564 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
4841, 47remulcld 9949 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
4948resincld 14712 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5028fvmpt2 6200 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5137, 49, 50syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5251oveq2d 6565 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5352adantll 746 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5436, 53eqtrd 2644 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5554fveq2d 6107 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
5626recnd 9947 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
5749adantll 746 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5857recnd 9947 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
5956, 58absmuld 14041 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6055, 59eqtrd 2644 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6160adantllr 751 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6261adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6356abscld 14023 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6458abscld 14023 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
6563, 64remulcld 9949 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6665adantllr 751 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6766adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6863adantllr 751 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ∈ ℝ)
70 rpre 11715 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
7170ad4antlr 765 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → 𝑎 ∈ ℝ)
72 1red 9934 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 1 ∈ ℝ)
7356absge0d 14031 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑈𝑠)))
7448adantll 746 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
75 abssinbd 38450 . . . . . . . . . . . . . . . . . 18 (((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7674, 75syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7764, 72, 63, 73, 76lemul2ad 10843 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ ((abs‘(𝑈𝑠)) · 1))
7863recnd 9947 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℂ)
7978mulid1d 9936 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · 1) = (abs‘(𝑈𝑠)))
8077, 79breqtrd 4609 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8180adantllr 751 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8281adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
83 simpr 476 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ≤ 𝑎)
8467, 69, 71, 82, 83letrd 10073 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ 𝑎)
8562, 84eqbrtrd 4605 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8618, 19, 22, 85syl21anc 1317 . . . . . . . . . 10 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8786ex 449 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) → (abs‘(𝐺𝑠)) ≤ 𝑎))
8814, 87ralrimi 2940 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
8988ralrimiva 2949 . . . . . . 7 (((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9089ex 449 . . . . . 6 ((𝜑𝑎 ∈ ℝ+) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
9190reximdva 3000 . . . . 5 (𝜑 → (∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
929, 91mpd 15 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9392adantr 480 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
94 fourierdlem87.d . . . . . . . 8 𝐷 = ((𝑒 / 3) / 𝑎)
95 id 22 . . . . . . . . . . 11 (𝑒 ∈ ℝ+𝑒 ∈ ℝ+)
96 3rp 11714 . . . . . . . . . . . 12 3 ∈ ℝ+
9796a1i 11 . . . . . . . . . . 11 (𝑒 ∈ ℝ+ → 3 ∈ ℝ+)
9895, 97rpdivcld 11765 . . . . . . . . . 10 (𝑒 ∈ ℝ+ → (𝑒 / 3) ∈ ℝ+)
9998adantr 480 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → (𝑒 / 3) ∈ ℝ+)
100 simpr 476 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
10199, 100rpdivcld 11765 . . . . . . . 8 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → ((𝑒 / 3) / 𝑎) ∈ ℝ+)
10294, 101syl5eqel 2692 . . . . . . 7 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
103102adantll 746 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
1041033adant3 1074 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → 𝐷 ∈ ℝ+)
105 nfv 1830 . . . . . . . . . . 11 𝑛(𝜑𝑒 ∈ ℝ+)
106 nfv 1830 . . . . . . . . . . 11 𝑛 𝑎 ∈ ℝ+
107 nfra1 2925 . . . . . . . . . . 11 𝑛𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎
108105, 106, 107nf3an 1819 . . . . . . . . . 10 𝑛((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
109 nfv 1830 . . . . . . . . . 10 𝑛 𝑢 ∈ dom vol
110108, 109nfan 1816 . . . . . . . . 9 𝑛(((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol)
111 nfv 1830 . . . . . . . . 9 𝑛(𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)
112110, 111nfan 1816 . . . . . . . 8 𝑛((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷))
113 fourierdlem87.ch . . . . . . . . . 10 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
114 simpl1l 1105 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝜑)
115114ad2antrr 758 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝜑)
116113, 115sylbi 206 . . . . . . . . . . . . . . . . 17 (𝜒𝜑)
117116, 1syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝐹:ℝ⟶ℝ)
118116, 2syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑋 ∈ ℝ)
119116, 3syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑌 ∈ ℝ)
120116, 4syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑊 ∈ ℝ)
12127adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
122113, 121sylbi 206 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℝ)
123117, 118, 119, 120, 5, 6, 7, 122, 28, 34fourierdlem67 39066 . . . . . . . . . . . . . . 15 (𝜒𝐺:(-π[,]π)⟶ℝ)
124123adantr 480 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝐺:(-π[,]π)⟶ℝ)
125 simplrl 796 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ⊆ (-π[,]π))
126113, 125sylbi 206 . . . . . . . . . . . . . . 15 (𝜒𝑢 ⊆ (-π[,]π))
127126sselda 3568 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝑠 ∈ (-π[,]π))
128124, 127ffvelrnd 6268 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℝ)
129 simpllr 795 . . . . . . . . . . . . . . 15 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ∈ dom vol)
130113, 129sylbi 206 . . . . . . . . . . . . . 14 (𝜒𝑢 ∈ dom vol)
131123ffvelrnda 6267 . . . . . . . . . . . . . 14 ((𝜒𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
132123feqmptd 6159 . . . . . . . . . . . . . . 15 (𝜒𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
133113simprbi 479 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℕ)
134 fourierdlem87.gibl . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
135116, 133, 134syl2anc 691 . . . . . . . . . . . . . . 15 (𝜒𝐺 ∈ 𝐿1)
136132, 135eqeltrrd 2689 . . . . . . . . . . . . . 14 (𝜒 → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
137126, 130, 131, 136iblss 23377 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢 ↦ (𝐺𝑠)) ∈ 𝐿1)
138128, 137itgcl 23356 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(𝐺𝑠) d𝑠 ∈ ℂ)
139138abscld 14023 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ∈ ℝ)
140128recnd 9947 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℂ)
141140abscld 14023 . . . . . . . . . . . 12 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ∈ ℝ)
142128, 137iblabs 23401 . . . . . . . . . . . 12 (𝜒 → (𝑠𝑢 ↦ (abs‘(𝐺𝑠))) ∈ 𝐿1)
143141, 142itgrecl 23370 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ∈ ℝ)
144 simpl1r 1106 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑒 ∈ ℝ+)
145144ad2antrr 758 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑒 ∈ ℝ+)
146113, 145sylbi 206 . . . . . . . . . . . . 13 (𝜒𝑒 ∈ ℝ+)
147146rpred 11748 . . . . . . . . . . . 12 (𝜒𝑒 ∈ ℝ)
148147rehalfcld 11156 . . . . . . . . . . 11 (𝜒 → (𝑒 / 2) ∈ ℝ)
149128, 137itgabs 23407 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ≤ ∫𝑢(abs‘(𝐺𝑠)) d𝑠)
150 simpl2 1058 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑎 ∈ ℝ+)
151150ad2antrr 758 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑎 ∈ ℝ+)
152113, 151sylbi 206 . . . . . . . . . . . . . . 15 (𝜒𝑎 ∈ ℝ+)
153152rpred 11748 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℝ)
154153adantr 480 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → 𝑎 ∈ ℝ)
155 iccssxr 12127 . . . . . . . . . . . . . . . 16 (0[,]+∞) ⊆ ℝ*
156 volf 23104 . . . . . . . . . . . . . . . . . 18 vol:dom vol⟶(0[,]+∞)
157156a1i 11 . . . . . . . . . . . . . . . . 17 (𝜒 → vol:dom vol⟶(0[,]+∞))
158157, 130ffvelrnd 6268 . . . . . . . . . . . . . . . 16 (𝜒 → (vol‘𝑢) ∈ (0[,]+∞))
159155, 158sseldi 3566 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ∈ ℝ*)
160 iccvolcl 23142 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ ∧ π ∈ ℝ) → (vol‘(-π[,]π)) ∈ ℝ)
16143, 42, 160mp2an 704 . . . . . . . . . . . . . . . 16 (vol‘(-π[,]π)) ∈ ℝ
162161a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘(-π[,]π)) ∈ ℝ)
163 mnfxr 9975 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
164163a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ ∈ ℝ*)
165 0xr 9965 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
166165a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ∈ ℝ*)
167 mnflt0 11835 . . . . . . . . . . . . . . . . 17 -∞ < 0
168167a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ < 0)
169 volge0 38853 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ dom vol → 0 ≤ (vol‘𝑢))
170130, 169syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ≤ (vol‘𝑢))
171164, 166, 159, 168, 170xrltletrd 11868 . . . . . . . . . . . . . . 15 (𝜒 → -∞ < (vol‘𝑢))
172 iccmbl 23141 . . . . . . . . . . . . . . . . . 18 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ∈ dom vol)
17343, 42, 172mp2an 704 . . . . . . . . . . . . . . . . 17 (-π[,]π) ∈ dom vol
174173a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → (-π[,]π) ∈ dom vol)
175 volss 23108 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ dom vol ∧ (-π[,]π) ∈ dom vol ∧ 𝑢 ⊆ (-π[,]π)) → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
176130, 174, 126, 175syl3anc 1318 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
177 xrre 11874 . . . . . . . . . . . . . . 15 ((((vol‘𝑢) ∈ ℝ* ∧ (vol‘(-π[,]π)) ∈ ℝ) ∧ (-∞ < (vol‘𝑢) ∧ (vol‘𝑢) ≤ (vol‘(-π[,]π)))) → (vol‘𝑢) ∈ ℝ)
178159, 162, 171, 176, 177syl22anc 1319 . . . . . . . . . . . . . 14 (𝜒 → (vol‘𝑢) ∈ ℝ)
179152rpcnd 11750 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℂ)
180 iblconstmpt 38847 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → (𝑠𝑢𝑎) ∈ 𝐿1)
181130, 178, 179, 180syl3anc 1318 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢𝑎) ∈ 𝐿1)
182154, 181itgrecl 23370 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 ∈ ℝ)
183 simpl3 1059 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
184183ad2antrr 758 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
185113, 184sylbi 206 . . . . . . . . . . . . . . . 16 (𝜒 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
186 rspa 2914 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
187185, 133, 186syl2anc 691 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
188187adantr 480 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
189 rspa 2914 . . . . . . . . . . . . . 14 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
190188, 127, 189syl2anc 691 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ≤ 𝑎)
191142, 181, 141, 154, 190itgle 23382 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ≤ ∫𝑢𝑎 d𝑠)
192 itgconst 23391 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
193130, 178, 179, 192syl3anc 1318 . . . . . . . . . . . . 13 (𝜒 → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
194153, 178remulcld 9949 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ∈ ℝ)
195 3re 10971 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
196195a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ∈ ℝ)
197 3ne0 10992 . . . . . . . . . . . . . . . . . . 19 3 ≠ 0
198197a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ≠ 0)
199147, 196, 198redivcld 10732 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℝ)
200152rpne0d 11753 . . . . . . . . . . . . . . . . 17 (𝜒𝑎 ≠ 0)
201199, 153, 200redivcld 10732 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑒 / 3) / 𝑎) ∈ ℝ)
20294, 201syl5eqel 2692 . . . . . . . . . . . . . . 15 (𝜒𝐷 ∈ ℝ)
203153, 202remulcld 9949 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) ∈ ℝ)
204152rpge0d 11752 . . . . . . . . . . . . . . 15 (𝜒 → 0 ≤ 𝑎)
205 simplrr 797 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (vol‘𝑢) ≤ 𝐷)
206113, 205sylbi 206 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ 𝐷)
207178, 202, 153, 204, 206lemul2ad 10843 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ≤ (𝑎 · 𝐷))
20894oveq2i 6560 . . . . . . . . . . . . . . . 16 (𝑎 · 𝐷) = (𝑎 · ((𝑒 / 3) / 𝑎))
209199recnd 9947 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℂ)
210209, 179, 200divcan2d 10682 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑎 · ((𝑒 / 3) / 𝑎)) = (𝑒 / 3))
211208, 210syl5eq 2656 . . . . . . . . . . . . . . 15 (𝜒 → (𝑎 · 𝐷) = (𝑒 / 3))
212 2rp 11713 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
213212a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 ∈ ℝ+)
21496a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 3 ∈ ℝ+)
215 2lt3 11072 . . . . . . . . . . . . . . . . 17 2 < 3
216215a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 < 3)
217213, 214, 146, 216ltdiv2dd 38448 . . . . . . . . . . . . . . 15 (𝜒 → (𝑒 / 3) < (𝑒 / 2))
218211, 217eqbrtrd 4605 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) < (𝑒 / 2))
219194, 203, 148, 207, 218lelttrd 10074 . . . . . . . . . . . . 13 (𝜒 → (𝑎 · (vol‘𝑢)) < (𝑒 / 2))
220193, 219eqbrtrd 4605 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 < (𝑒 / 2))
221143, 182, 148, 191, 220lelttrd 10074 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 < (𝑒 / 2))
222139, 143, 148, 149, 221lelttrd 10074 . . . . . . . . . 10 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
223113, 222sylbir 224 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
224223ex 449 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → (𝑛 ∈ ℕ → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
225112, 224ralrimi 2940 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
226225ex 449 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
227226ralrimiva 2949 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
228 breq2 4587 . . . . . . . . 9 (𝑑 = 𝐷 → ((vol‘𝑢) ≤ 𝑑 ↔ (vol‘𝑢) ≤ 𝐷))
229228anbi2d 736 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) ↔ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)))
230229imbi1d 330 . . . . . . 7 (𝑑 = 𝐷 → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))))
231230ralbidv 2969 . . . . . 6 (𝑑 = 𝐷 → (∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))))
232231rspcev 3282 . . . . 5 ((𝐷 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
233104, 227, 232syl2anc 691 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
234233rexlimdv3a 3015 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))))
23593, 234mpd 15 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
236 simplll 794 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝜑)
237 simplr 788 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑛 ∈ ℕ)
238 simpllr 795 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑢 ⊆ (-π[,]π))
239 simpr 476 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠𝑢)
240238, 239sseldd 3569 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠 ∈ (-π[,]π))
241236, 237, 240, 54syl21anc 1317 . . . . . . . . . . 11 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
242241itgeq2dv 23354 . . . . . . . . . 10 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ∫𝑢(𝐺𝑠) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠)
243242fveq2d 6107 . . . . . . . . 9 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠))
244243breq1d 4593 . . . . . . . 8 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ((abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
245244ralbidva 2968 . . . . . . 7 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
246 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
247246oveq1d 6564 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
248247fveq2d 6107 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
249248oveq2d 6565 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
250249adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑘𝑠𝑢) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
251250itgeq2dv 23354 . . . . . . . . . 10 (𝑛 = 𝑘 → ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
252251fveq2d 6107 . . . . . . . . 9 (𝑛 = 𝑘 → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
253252breq1d 4593 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
254253cbvralv 3147 . . . . . . 7 (∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
255245, 254syl6bb 275 . . . . . 6 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
256255adantrr 749 . . . . 5 ((𝜑 ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
257256pm5.74da 719 . . . 4 (𝜑 → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
258257rexralbidv 3040 . . 3 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
259258adantr 480 . 2 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
260235, 259mpbid 221 1 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  -∞cmnf 9951  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  3c3 10948  ℝ+crp 11708  [,]cicc 12049  abscabs 13822  sincsin 14633  πcpi 14636  volcvol 23039  𝐿1cibl 23192  ∫citg 23193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437 This theorem is referenced by:  fourierdlem103  39102  fourierdlem104  39103
 Copyright terms: Public domain W3C validator