Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem86 Structured version   Visualization version   GIF version

Theorem fourierdlem86 39085
 Description: Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem86.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem86.xre (𝜑𝑋 ∈ ℝ)
fourierdlem86.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem86.m (𝜑𝑀 ∈ ℕ)
fourierdlem86.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem86.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem86.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem86.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem86.a (𝜑𝐴 ∈ ℝ)
fourierdlem86.b (𝜑𝐵 ∈ ℝ)
fourierdlem86.altb (𝜑𝐴 < 𝐵)
fourierdlem86.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem86.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem86.c (𝜑𝐶 ∈ ℝ)
fourierdlem86.o 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem86.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem86.t 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
fourierdlem86.n 𝑁 = ((#‘𝑇) − 1)
fourierdlem86.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem86.d 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
fourierdlem86.e 𝐸 = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
fourierdlem86.u 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem86 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑠   𝑖,𝐹,𝑠   𝐿,𝑠   𝑖,𝑀,𝑗   𝑚,𝑀,𝑝,𝑖   𝑀,𝑠,𝑗   𝑓,𝑁   𝑖,𝑁,𝑠   𝑖,𝑂   𝑄,𝑖,𝑠   𝑅,𝑠   𝑆,𝑓   𝑆,𝑖,𝑠   𝑇,𝑓   𝑈,𝑖   𝑖,𝑉,𝑗   𝑉,𝑝   𝑉,𝑠   𝑖,𝑋,𝑗   𝑚,𝑋,𝑝   𝑋,𝑠   𝑓,𝑗,𝜑   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑓,𝑖,𝑗,𝑚,𝑝)   𝐵(𝑓,𝑖,𝑗,𝑚,𝑝)   𝐶(𝑓,𝑗,𝑚,𝑝)   𝐷(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝑃(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝑄(𝑓,𝑗,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑗,𝑚,𝑝)   𝑆(𝑗,𝑚,𝑝)   𝑇(𝑖,𝑗,𝑚,𝑠,𝑝)   𝑈(𝑓,𝑗,𝑚,𝑠,𝑝)   𝐸(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝐹(𝑓,𝑗,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑗,𝑚,𝑝)   𝑀(𝑓)   𝑁(𝑗,𝑚,𝑝)   𝑂(𝑓,𝑗,𝑚,𝑠,𝑝)   𝑉(𝑓,𝑚)   𝑋(𝑓)

Proof of Theorem fourierdlem86
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem86.d . . 3 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
2 fourierdlem86.xre . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
32adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
4 fourierdlem86.p . . . . . . . 8 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
5 fourierdlem86.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
65adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
7 fourierdlem86.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝑃𝑀))
87adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
9 fourierdlem86.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
109adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ)
11 fourierdlem86.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
1211adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐵 ∈ ℝ)
13 fourierdlem86.altb . . . . . . . . 9 (𝜑𝐴 < 𝐵)
1413adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 < 𝐵)
15 fourierdlem86.ab . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
1615adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π))
17 fourierdlem86.q . . . . . . . 8 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
18 fourierdlem86.t . . . . . . . 8 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
19 fourierdlem86.n . . . . . . . 8 𝑁 = ((#‘𝑇) − 1)
20 fourierdlem86.s . . . . . . . 8 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
21 simpr 476 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
22 fourierdlem86.u . . . . . . . 8 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
23 biid 250 . . . . . . . 8 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑦)(,)(𝑄‘(𝑦 + 1)))) ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑦)(,)(𝑄‘(𝑦 + 1)))))
243, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23fourierdlem50 39049 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑈 ∈ (0..^𝑀) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
2524simpld 474 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑈 ∈ (0..^𝑀))
26 id 22 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝜑𝑗 ∈ (0..^𝑁)))
2724simprd 478 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
2826, 25, 27jca31 555 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
29 nfv 1830 . . . . . . . 8 𝑖(((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
30 nfv 1830 . . . . . . . . . . . . . . 15 𝑖(𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1))
31 nfcsb1v 3515 . . . . . . . . . . . . . . 15 𝑖𝑈 / 𝑖𝐿
32 nfcv 2751 . . . . . . . . . . . . . . 15 𝑖(𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))
3330, 31, 32nfif 4065 . . . . . . . . . . . . . 14 𝑖if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))))
34 nfcv 2751 . . . . . . . . . . . . . 14 𝑖
35 nfcv 2751 . . . . . . . . . . . . . 14 𝑖𝐶
3633, 34, 35nfov 6575 . . . . . . . . . . . . 13 𝑖(if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶)
37 nfcv 2751 . . . . . . . . . . . . 13 𝑖 /
38 nfcv 2751 . . . . . . . . . . . . 13 𝑖(𝑆‘(𝑗 + 1))
3936, 37, 38nfov 6575 . . . . . . . . . . . 12 𝑖((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1)))
40 nfcv 2751 . . . . . . . . . . . 12 𝑖 ·
41 nfcv 2751 . . . . . . . . . . . 12 𝑖((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))
4239, 40, 41nfov 6575 . . . . . . . . . . 11 𝑖(((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
4342nfel1 2765 . . . . . . . . . 10 𝑖(((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1)))
44 nfv 1830 . . . . . . . . . . . . . . 15 𝑖(𝑆𝑗) = (𝑄𝑈)
45 nfcsb1v 3515 . . . . . . . . . . . . . . 15 𝑖𝑈 / 𝑖𝑅
46 nfcv 2751 . . . . . . . . . . . . . . 15 𝑖(𝐹‘(𝑋 + (𝑆𝑗)))
4744, 45, 46nfif 4065 . . . . . . . . . . . . . 14 𝑖if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗))))
4847, 34, 35nfov 6575 . . . . . . . . . . . . 13 𝑖(if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶)
49 nfcv 2751 . . . . . . . . . . . . 13 𝑖(𝑆𝑗)
5048, 37, 49nfov 6575 . . . . . . . . . . . 12 𝑖((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗))
51 nfcv 2751 . . . . . . . . . . . 12 𝑖((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))
5250, 40, 51nfov 6575 . . . . . . . . . . 11 𝑖(((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
5352nfel1 2765 . . . . . . . . . 10 𝑖(((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))
5443, 53nfan 1816 . . . . . . . . 9 𝑖((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
55 nfv 1830 . . . . . . . . 9 𝑖(𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)
5654, 55nfan 1816 . . . . . . . 8 𝑖(((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
5729, 56nfim 1813 . . . . . . 7 𝑖((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
58 eleq1 2676 . . . . . . . . . 10 (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀)))
5958anbi2d 736 . . . . . . . . 9 (𝑖 = 𝑈 → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ↔ ((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀))))
60 fveq2 6103 . . . . . . . . . . 11 (𝑖 = 𝑈 → (𝑄𝑖) = (𝑄𝑈))
61 oveq1 6556 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
6261fveq2d 6107 . . . . . . . . . . 11 (𝑖 = 𝑈 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑈 + 1)))
6360, 62oveq12d 6567 . . . . . . . . . 10 (𝑖 = 𝑈 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
6463sseq2d 3596 . . . . . . . . 9 (𝑖 = 𝑈 → (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
6559, 64anbi12d 743 . . . . . . . 8 (𝑖 = 𝑈 → ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))))
6662eqeq2d 2620 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → ((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)) ↔ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1))))
67 csbeq1a 3508 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈𝐿 = 𝑈 / 𝑖𝐿)
6866, 67ifbieq1d 4059 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) = if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))))
6968oveq1d 6564 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) = (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶))
7069oveq1d 6564 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) = ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))))
7170oveq1d 6564 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))))
7271eleq1d 2672 . . . . . . . . . 10 (𝑖 = 𝑈 → ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ↔ (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1)))))
7360eqeq2d 2620 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → ((𝑆𝑗) = (𝑄𝑖) ↔ (𝑆𝑗) = (𝑄𝑈)))
74 csbeq1a 3508 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈𝑅 = 𝑈 / 𝑖𝑅)
7573, 74ifbieq1d 4059 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) = if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))))
7675oveq1d 6564 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → (if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) = (if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶))
7776oveq1d 6564 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) = ((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)))
7877oveq1d 6564 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))))
7978eleq1d 2672 . . . . . . . . . 10 (𝑖 = 𝑈 → ((((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)) ↔ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))))
8072, 79anbi12d 743 . . . . . . . . 9 (𝑖 = 𝑈 → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ↔ ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))))
8180anbi1d 737 . . . . . . . 8 (𝑖 = 𝑈 → ((((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) ↔ (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))))
8265, 81imbi12d 333 . . . . . . 7 (𝑖 = 𝑈 → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))) ↔ ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))))
83 fourierdlem86.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
84 fourierdlem86.fcn . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
85 fourierdlem86.r . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
86 fourierdlem86.l . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
87 fourierdlem86.n0 . . . . . . . 8 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
88 fourierdlem86.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
89 fourierdlem86.o . . . . . . . 8 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
90 eqid 2610 . . . . . . . 8 (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
91 eqid 2610 . . . . . . . 8 (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) = (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
92 biid 250 . . . . . . . 8 ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
9383, 2, 4, 5, 7, 84, 85, 86, 9, 11, 13, 15, 87, 88, 89, 17, 18, 19, 20, 90, 91, 92fourierdlem76 39075 . . . . . . 7 ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
9457, 82, 93vtoclg1f 3238 . . . . . 6 (𝑈 ∈ (0..^𝑀) → ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))))
9525, 28, 94sylc 63 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
9695simpld 474 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))))
9796simpld 474 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
981, 97syl5eqel 2692 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
99 fourierdlem86.e . . 3 𝐸 = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
10096simprd 478 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
10199, 100syl5eqel 2692 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
10295simprd 478 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
10398, 101, 102jca31 555 1 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  ⦋csb 3499   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ifcif 4036  {cpr 4127   class class class wbr 4583   ↦ cmpt 4643  ran crn 5039   ↾ cres 5040  ℩cio 5766  ⟶wf 5800  ‘cfv 5804   Isom wiso 5805  ℩crio 6510  (class class class)co 6549   ↑𝑚 cmap 7744  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  #chash 12979  sincsin 14633  πcpi 14636  –cn→ccncf 22487   limℂ climc 23432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  fourierdlem103  39102  fourierdlem104  39103
 Copyright terms: Public domain W3C validator