Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem1 Structured version   Visualization version   GIF version

Theorem wallispilem1 38958
 Description: 𝐼 is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispilem1.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
wallispilem1.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
wallispilem1 (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼𝑁))
Distinct variable groups:   𝑥,𝑛,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐼(𝑥,𝑛)

Proof of Theorem wallispilem1
StepHypRef Expression
1 0re 9919 . . . . 5 0 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ)
3 pire 24014 . . . . 5 π ∈ ℝ
43a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 wallispilem1.2 . . . . 5 (𝜑𝑁 ∈ ℕ0)
6 peano2nn0 11210 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
75, 6syl 17 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ0)
8 iblioosinexp 38844 . . . 4 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 + 1))) ∈ 𝐿1)
92, 4, 7, 8syl3anc 1318 . . 3 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 + 1))) ∈ 𝐿1)
10 iblioosinexp 38844 . . . 4 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
112, 4, 5, 10syl3anc 1318 . . 3 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
12 elioore 12076 . . . . . 6 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
1312resincld 14712 . . . . 5 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℝ)
1413adantl 481 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℝ)
157adantr 480 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 + 1) ∈ ℕ0)
1614, 15reexpcld 12887 . . 3 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 + 1)) ∈ ℝ)
175adantr 480 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
1814, 17reexpcld 12887 . . 3 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) ∈ ℝ)
195nn0zd 11356 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
20 uzid 11578 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
2119, 20syl 17 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑁))
22 peano2uz 11617 . . . . . 6 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
2321, 22syl 17 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑁))
2423adantr 480 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 + 1) ∈ (ℤ𝑁))
2513, 1jctil 558 . . . . . 6 (𝑥 ∈ (0(,)π) → (0 ∈ ℝ ∧ (sin‘𝑥) ∈ ℝ))
26 sinq12gt0 24063 . . . . . 6 (𝑥 ∈ (0(,)π) → 0 < (sin‘𝑥))
27 ltle 10005 . . . . . 6 ((0 ∈ ℝ ∧ (sin‘𝑥) ∈ ℝ) → (0 < (sin‘𝑥) → 0 ≤ (sin‘𝑥)))
2825, 26, 27sylc 63 . . . . 5 (𝑥 ∈ (0(,)π) → 0 ≤ (sin‘𝑥))
2928adantl 481 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → 0 ≤ (sin‘𝑥))
30 sinbnd 14749 . . . . . . 7 (𝑥 ∈ ℝ → (-1 ≤ (sin‘𝑥) ∧ (sin‘𝑥) ≤ 1))
3112, 30syl 17 . . . . . 6 (𝑥 ∈ (0(,)π) → (-1 ≤ (sin‘𝑥) ∧ (sin‘𝑥) ≤ 1))
3231simprd 478 . . . . 5 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ≤ 1)
3332adantl 481 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ≤ 1)
3414, 17, 24, 29, 33leexp2rd 12904 . . 3 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 + 1)) ≤ ((sin‘𝑥)↑𝑁))
359, 11, 16, 18, 34itgle 23382 . 2 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥 ≤ ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
36 oveq2 6557 . . . . . 6 (𝑛 = (𝑁 + 1) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 + 1)))
3736adantr 480 . . . . 5 ((𝑛 = (𝑁 + 1) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 + 1)))
3837itgeq2dv 23354 . . . 4 (𝑛 = (𝑁 + 1) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥)
39 wallispilem1.1 . . . 4 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
40 itgex 23343 . . . 4 ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥 ∈ V
4138, 39, 40fvmpt 6191 . . 3 ((𝑁 + 1) ∈ ℕ0 → (𝐼‘(𝑁 + 1)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥)
427, 41syl 17 . 2 (𝜑 → (𝐼‘(𝑁 + 1)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥)
43 oveq2 6557 . . . . . 6 (𝑛 = 𝑁 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
4443adantr 480 . . . . 5 ((𝑛 = 𝑁𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
4544itgeq2dv 23354 . . . 4 (𝑛 = 𝑁 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
46 itgex 23343 . . . 4 ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V
4745, 39, 46fvmpt 6191 . . 3 (𝑁 ∈ ℕ0 → (𝐼𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
485, 47syl 17 . 2 (𝜑 → (𝐼𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
4935, 42, 483brtr4d 4615 1 (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954  -cneg 10146  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  (,)cioo 12046  ↑cexp 12722  sincsin 14633  πcpi 14636  𝐿1cibl 23192  ∫citg 23193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437 This theorem is referenced by:  wallispilem5  38962
 Copyright terms: Public domain W3C validator