Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reopn | Structured version Visualization version GIF version |
Description: The reals are open with respect to the standard topology. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
reopn | ⊢ ℝ ∈ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop 22375 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
2 | uniretop 22376 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
3 | 2 | topopn 20536 | . 2 ⊢ ((topGen‘ran (,)) ∈ Top → ℝ ∈ (topGen‘ran (,))) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ℝ ∈ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 ran crn 5039 ‘cfv 5804 ℝcr 9814 (,)cioo 12046 topGenctg 15921 Topctop 20517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-pre-lttri 9889 ax-pre-lttrn 9890 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-ioo 12050 df-topgen 15927 df-top 20521 df-bases 20522 |
This theorem is referenced by: fperdvper 38808 dirkeritg 38995 etransclem2 39129 etransclem23 39150 etransclem35 39162 etransclem38 39165 etransclem39 39166 etransclem44 39171 etransclem45 39172 etransclem47 39174 |
Copyright terms: Public domain | W3C validator |