Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodconst Structured version   Visualization version   GIF version

Theorem fprodconst 14547
 Description: The product of constant terms (𝑘 is not free in 𝐵.) (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fprodconst
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp0 12726 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
21eqcomd 2616 . . . 4 (𝐵 ∈ ℂ → 1 = (𝐵↑0))
3 prodeq1 14478 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
4 prod0 14512 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
53, 4syl6eq 2660 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
6 fveq2 6103 . . . . . . 7 (𝐴 = ∅ → (#‘𝐴) = (#‘∅))
7 hash0 13019 . . . . . . 7 (#‘∅) = 0
86, 7syl6eq 2660 . . . . . 6 (𝐴 = ∅ → (#‘𝐴) = 0)
98oveq2d 6565 . . . . 5 (𝐴 = ∅ → (𝐵↑(#‘𝐴)) = (𝐵↑0))
105, 9eqeq12d 2625 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴)) ↔ 1 = (𝐵↑0)))
112, 10syl5ibrcom 236 . . 3 (𝐵 ∈ ℂ → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
1211adantl 481 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
13 eqidd 2611 . . . . . . 7 (𝑘 = (𝑓𝑛) → 𝐵 = 𝐵)
14 simprl 790 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ ℕ)
15 simprr 792 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)
16 simpllr 795 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simpllr 795 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 𝐵 ∈ ℂ)
18 elfznn 12241 . . . . . . . . 9 (𝑛 ∈ (1...(#‘𝐴)) → 𝑛 ∈ ℕ)
1918adantl 481 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 𝑛 ∈ ℕ)
20 fvconst2g 6372 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2117, 19, 20syl2anc 691 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2213, 14, 15, 16, 21fprod 14510 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , (ℕ × {𝐵}))‘(#‘𝐴)))
23 expnnval 12725 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (#‘𝐴) ∈ ℕ) → (𝐵↑(#‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(#‘𝐴)))
2423ad2ant2lr 780 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝐵↑(#‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(#‘𝐴)))
2522, 24eqtr4d 2647 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴)))
2625expr 641 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
2726exlimdv 1848 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
2827expimpd 627 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴))))
29 fz1f1o 14288 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
3029adantr 480 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
3112, 28, 30mpjaod 395 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(#‘𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∅c0 3874  {csn 4125   × cxp 5036  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℂcc 9813  0cc0 9815  1c1 9816   · cmul 9820  ℕcn 10897  ...cfz 12197  seqcseq 12663  ↑cexp 12722  #chash 12979  ∏cprod 14474 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475 This theorem is referenced by:  risefallfac  14594  gausslemma2dlem5  24896  gausslemma2dlem6  24897  bcprod  30877  etransclem23  39150  hoicvrrex  39446  ovnhoilem1  39491  vonsn  39582
 Copyright terms: Public domain W3C validator