Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | lttr 9993 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1416 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 class class class wbr 4583 ℝcr 9814 < clt 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-pre-lttrn 9890 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 |
This theorem is referenced by: 1lt3 11073 2lt4 11075 1lt4 11076 3lt5 11078 2lt5 11079 1lt5 11080 4lt6 11082 3lt6 11083 2lt6 11084 1lt6 11085 5lt7 11087 4lt7 11088 3lt7 11089 2lt7 11090 1lt7 11091 6lt8 11093 5lt8 11094 4lt8 11095 3lt8 11096 2lt8 11097 1lt8 11098 7lt9 11100 6lt9 11101 5lt9 11102 4lt9 11103 3lt9 11104 2lt9 11105 1lt9 11106 8lt10OLD 11108 7lt10OLD 11109 6lt10OLD 11110 5lt10OLD 11111 4lt10OLD 11112 3lt10OLD 11113 2lt10OLD 11114 1lt10OLD 11115 8lt10 11550 7lt10 11551 6lt10 11552 5lt10 11553 4lt10 11554 3lt10 11555 2lt10 11556 1lt10 11557 sincos2sgn 14763 epos 14774 ene1 14777 dvdslelem 14869 oppcbas 16201 sralem 18998 zlmlem 19684 psgnodpmr 19755 tnglem 22254 xrhmph 22554 vitalilem4 23186 pipos 24016 logneg 24138 asin1 24421 reasinsin 24423 atan1 24455 log2le1 24477 bposlem8 24816 bposlem9 24817 chebbnd1lem2 24959 chebbnd1lem3 24960 chebbnd1 24961 mulog2sumlem2 25024 pntibndlem1 25078 pntlemb 25086 pntlemk 25095 ttglem 25556 cchhllem 25567 axlowdimlem16 25637 sgnnbi 29934 sgnpbi 29935 signswch 29964 logi 30873 cnndvlem1 31698 bj-minftyccb 32289 bj-pinftynminfty 32291 asindmre 32665 fdc 32711 fourierdlem94 39093 fourierdlem102 39101 fourierdlem103 39102 fourierdlem104 39103 fourierdlem112 39111 fourierdlem113 39112 fourierdlem114 39113 fouriersw 39124 etransclem23 39150 |
Copyright terms: Public domain | W3C validator |