MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logexprlim Structured version   Visualization version   GIF version

Theorem logexprlim 24750
Description: The sum Σ𝑛𝑥, log↑𝑁(𝑥 / 𝑛) has the asymptotic expansion (𝑁!)𝑥 + 𝑜(𝑥). (More precisely, the omitted term has order 𝑂(log↑𝑁(𝑥) / 𝑥).) (Contributed by Mario Carneiro, 22-May-2016.)
Assertion
Ref Expression
logexprlim (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) ⇝𝑟 (!‘𝑁))
Distinct variable group:   𝑥,𝑛,𝑁

Proof of Theorem logexprlim
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12634 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 simpr 476 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
3 elfznn 12241 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
43nnrpd 11746 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
5 rpdivcl 11732 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
62, 4, 5syl2an 493 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
76relogcld 24173 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
8 simpll 786 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ0)
97, 8reexpcld 12887 . . . . . 6 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ)
101, 9fsumrecl 14312 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ)
11 relogcl 24126 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
12 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
13 reexpcl 12739 . . . . . . 7 (((log‘𝑥) ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((log‘𝑥)↑𝑁) ∈ ℝ)
1411, 12, 13syl2anr 494 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((log‘𝑥)↑𝑁) ∈ ℝ)
15 faccl 12932 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
1615adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (!‘𝑁) ∈ ℕ)
1716nnred 10912 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (!‘𝑁) ∈ ℝ)
18 fzfid 12634 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (0...𝑁) ∈ Fin)
1911adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
20 elfznn0 12302 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
21 reexpcl 12739 . . . . . . . . . 10 (((log‘𝑥) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((log‘𝑥)↑𝑘) ∈ ℝ)
2219, 20, 21syl2an 493 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℝ)
2320adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
24 faccl 12932 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2523, 24syl 17 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
2622, 25nndivred 10946 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ)
2718, 26fsumrecl 14312 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ)
2817, 27remulcld 9949 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℝ)
2914, 28resubcld 10337 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℝ)
3010, 29resubcld 10337 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℝ)
3130, 2rerpdivcld 11779 . . 3 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℝ)
32 rerpdivcl 11737 . . . 4 (((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℝ)
3329, 32sylancom 698 . . 3 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℝ)
34 1red 9934 . . . 4 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
3515nncnd 10913 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
36 simpl 472 . . . . . . . . 9 ((𝑘 = 𝑁𝑥 ∈ ℝ+) → 𝑘 = 𝑁)
3736oveq2d 6565 . . . . . . . 8 ((𝑘 = 𝑁𝑥 ∈ ℝ+) → ((log‘𝑥)↑𝑘) = ((log‘𝑥)↑𝑁))
3837oveq1d 6564 . . . . . . 7 ((𝑘 = 𝑁𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑘) / 𝑥) = (((log‘𝑥)↑𝑁) / 𝑥))
3938mpteq2dva 4672 . . . . . 6 (𝑘 = 𝑁 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)))
4039breq1d 4593 . . . . 5 (𝑘 = 𝑁 → ((𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟 0 ↔ (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)) ⇝𝑟 0))
4111recnd 9947 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
42 id 22 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
43 cxpexp 24214 . . . . . . . . 9 (((log‘𝑥) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((log‘𝑥)↑𝑐𝑘) = ((log‘𝑥)↑𝑘))
4441, 42, 43syl2anr 494 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑥 ∈ ℝ+) → ((log‘𝑥)↑𝑐𝑘) = ((log‘𝑥)↑𝑘))
45 rpcn 11717 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
4645adantl 481 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
4746cxp1d 24252 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
4844, 47oveq12d 6567 . . . . . . 7 ((𝑘 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑐𝑘) / (𝑥𝑐1)) = (((log‘𝑥)↑𝑘) / 𝑥))
4948mpteq2dva 4672 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥𝑐1))) = (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)))
50 nn0cn 11179 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
51 1rp 11712 . . . . . . 7 1 ∈ ℝ+
52 cxploglim2 24505 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 1 ∈ ℝ+) → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥𝑐1))) ⇝𝑟 0)
5350, 51, 52sylancl 693 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥𝑐1))) ⇝𝑟 0)
5449, 53eqbrtrrd 4607 . . . . 5 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟 0)
5540, 54vtoclga 3245 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)) ⇝𝑟 0)
56 rerpdivcl 11737 . . . . . 6 ((((log‘𝑥)↑𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ)
5714, 56sylancom 698 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ)
5857recnd 9947 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ)
5910recnd 9947 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ)
6014recnd 9947 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((log‘𝑥)↑𝑁) ∈ ℂ)
6135adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (!‘𝑁) ∈ ℂ)
6227recnd 9947 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
6361, 62mulcld 9939 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ)
6460, 63subcld 10271 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ)
6559, 64subcld 10271 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℂ)
66 rpcnne0 11726 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
6766adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
6867simpld 474 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
6967simprd 478 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
7065, 68, 69divcld 10680 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℂ)
7170adantrr 749 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℂ)
7215adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ∈ ℕ)
7372nncnd 10913 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ∈ ℂ)
7471, 73subcld 10271 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) ∈ ℂ)
7574abscld 14023 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ∈ ℝ)
7657adantrr 749 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ)
7776recnd 9947 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ)
7877abscld 14023 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥)↑𝑁) / 𝑥)) ∈ ℝ)
79 ioorp 12122 . . . . . . . . . 10 (0(,)+∞) = ℝ+
8079eqcomi 2619 . . . . . . . . 9 + = (0(,)+∞)
81 nnuz 11599 . . . . . . . . 9 ℕ = (ℤ‘1)
82 1z 11284 . . . . . . . . . 10 1 ∈ ℤ
8382a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℤ)
84 1red 9934 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ)
85 1re 9918 . . . . . . . . . . 11 1 ∈ ℝ
86 1nn0 11185 . . . . . . . . . . 11 1 ∈ ℕ0
8785, 86nn0addge1i 11218 . . . . . . . . . 10 1 ≤ (1 + 1)
8887a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ (1 + 1))
89 0red 9920 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ ℝ)
9072adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (!‘𝑁) ∈ ℕ)
9190nnred 10912 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (!‘𝑁) ∈ ℝ)
92 rpre 11715 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
9392adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
94 fzfid 12634 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (0...𝑁) ∈ Fin)
95 simprl 790 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
96 rpdivcl 11732 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 / 𝑦) ∈ ℝ+)
9795, 96sylan 487 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑥 / 𝑦) ∈ ℝ+)
9897relogcld 24173 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (log‘(𝑥 / 𝑦)) ∈ ℝ)
99 reexpcl 12739 . . . . . . . . . . . . . 14 (((log‘(𝑥 / 𝑦)) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((log‘(𝑥 / 𝑦))↑𝑘) ∈ ℝ)
10098, 20, 99syl2an 493 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) ∈ ℝ)
10120adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
102101, 24syl 17 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
103100, 102nndivred 10946 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) ∈ ℝ)
10494, 103fsumrecl 14312 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) ∈ ℝ)
10593, 104remulcld 9949 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) ∈ ℝ)
10691, 105remulcld 9949 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) ∈ ℝ)
107 simpll 786 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑁 ∈ ℕ0)
10898, 107reexpcld 12887 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → ((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℝ)
109 nnrp 11718 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
110109, 108sylan2 490 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℕ) → ((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℝ)
111 reelprrecn 9907 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
112111a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ℝ ∈ {ℝ, ℂ})
113105recnd 9947 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) ∈ ℂ)
114108, 90nndivred 10946 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)) ∈ ℝ)
115 simpl 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈ ℕ0)
116 advlogexp 24201 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑦 ∈ ℝ+ ↦ (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (𝑦 ∈ ℝ+ ↦ (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))))
11795, 115, 116syl2anc 691 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦ (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (𝑦 ∈ ℝ+ ↦ (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))))
118112, 113, 114, 117, 73dvmptcmul 23533 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦ ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦ ((!‘𝑁) · (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))))
119108recnd 9947 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → ((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℂ)
12073adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (!‘𝑁) ∈ ℂ)
12172nnne0d 10942 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ≠ 0)
122121adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (!‘𝑁) ≠ 0)
123119, 120, 122divcan2d 10682 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → ((!‘𝑁) · (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))) = ((log‘(𝑥 / 𝑦))↑𝑁))
124123mpteq2dva 4672 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑦 ∈ ℝ+ ↦ ((!‘𝑁) · (((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))) = (𝑦 ∈ ℝ+ ↦ ((log‘(𝑥 / 𝑦))↑𝑁)))
125118, 124eqtrd 2644 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦ ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦ ((log‘(𝑥 / 𝑦))↑𝑁)))
126 oveq2 6557 . . . . . . . . . . 11 (𝑦 = 𝑛 → (𝑥 / 𝑦) = (𝑥 / 𝑛))
127126fveq2d 6107 . . . . . . . . . 10 (𝑦 = 𝑛 → (log‘(𝑥 / 𝑦)) = (log‘(𝑥 / 𝑛)))
128127oveq1d 6564 . . . . . . . . 9 (𝑦 = 𝑛 → ((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘(𝑥 / 𝑛))↑𝑁))
12995rpxrd 11749 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ*)
130 simp1rl 1119 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑥 ∈ ℝ+)
131 simp2r 1081 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑛 ∈ ℝ+)
132130, 131rpdivcld 11765 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (𝑥 / 𝑛) ∈ ℝ+)
133132relogcld 24173 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
134 simp2l 1080 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑦 ∈ ℝ+)
135130, 134rpdivcld 11765 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (𝑥 / 𝑦) ∈ ℝ+)
136135relogcld 24173 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (log‘(𝑥 / 𝑦)) ∈ ℝ)
137 simp1l 1078 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑁 ∈ ℕ0)
138 log1 24136 . . . . . . . . . . 11 (log‘1) = 0
139131rpcnd 11750 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑛 ∈ ℂ)
140139mulid2d 9937 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (1 · 𝑛) = 𝑛)
141 simp33 1092 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑛𝑥)
142140, 141eqbrtrd 4605 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (1 · 𝑛) ≤ 𝑥)
143 1red 9934 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 1 ∈ ℝ)
144130rpred 11748 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑥 ∈ ℝ)
145143, 144, 131lemuldivd 11797 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
146142, 145mpbid 221 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 1 ≤ (𝑥 / 𝑛))
147 logleb 24153 . . . . . . . . . . . . 13 ((1 ∈ ℝ+ ∧ (𝑥 / 𝑛) ∈ ℝ+) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛))))
14851, 132, 147sylancr 694 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛))))
149146, 148mpbid 221 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (log‘1) ≤ (log‘(𝑥 / 𝑛)))
150138, 149syl5eqbrr 4619 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 0 ≤ (log‘(𝑥 / 𝑛)))
151 simp32 1091 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → 𝑦𝑛)
152134, 131, 130lediv2d 11772 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (𝑦𝑛 ↔ (𝑥 / 𝑛) ≤ (𝑥 / 𝑦)))
153151, 152mpbid 221 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (𝑥 / 𝑛) ≤ (𝑥 / 𝑦))
154132, 135logled 24177 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → ((𝑥 / 𝑛) ≤ (𝑥 / 𝑦) ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦))))
155153, 154mpbid 221 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦)))
156 leexp1a 12781 . . . . . . . . . 10 ((((log‘(𝑥 / 𝑛)) ∈ ℝ ∧ (log‘(𝑥 / 𝑦)) ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ (log‘(𝑥 / 𝑛)) ∧ (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦)))) → ((log‘(𝑥 / 𝑛))↑𝑁) ≤ ((log‘(𝑥 / 𝑦))↑𝑁))
157133, 136, 137, 150, 155, 156syl32anc 1326 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑦𝑦𝑛𝑛𝑥)) → ((log‘(𝑥 / 𝑛))↑𝑁) ≤ ((log‘(𝑥 / 𝑦))↑𝑁))
158 eqid 2610 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))
159973ad2antr1 1219 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (𝑥 / 𝑦) ∈ ℝ+)
160159relogcld 24173 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (log‘(𝑥 / 𝑦)) ∈ ℝ)
161 simpll 786 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑁 ∈ ℕ0)
162 rpcn 11717 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
163162adantl 481 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
1641633ad2antr1 1219 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑦 ∈ ℂ)
165164mulid2d 9937 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (1 · 𝑦) = 𝑦)
166 simpr3 1062 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑦𝑥)
167165, 166eqbrtrd 4605 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (1 · 𝑦) ≤ 𝑥)
168 1red 9934 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 1 ∈ ℝ)
16995rpred 11748 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
170169adantr 480 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑥 ∈ ℝ)
171 simpr1 1060 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 𝑦 ∈ ℝ+)
172168, 170, 171lemuldivd 11797 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → ((1 · 𝑦) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑦)))
173167, 172mpbid 221 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 1 ≤ (𝑥 / 𝑦))
174 logleb 24153 . . . . . . . . . . . . 13 ((1 ∈ ℝ+ ∧ (𝑥 / 𝑦) ∈ ℝ+) → (1 ≤ (𝑥 / 𝑦) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑦))))
17551, 159, 174sylancr 694 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (1 ≤ (𝑥 / 𝑦) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑦))))
176173, 175mpbid 221 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → (log‘1) ≤ (log‘(𝑥 / 𝑦)))
177138, 176syl5eqbrr 4619 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 0 ≤ (log‘(𝑥 / 𝑦)))
178160, 161, 177expge0d 12888 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦𝑦𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑦))↑𝑁))
17951a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ+)
180 1le1 10534 . . . . . . . . . 10 1 ≤ 1
181180a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 1)
182 simprr 792 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
183169leidd 10473 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥𝑥)
18480, 81, 83, 84, 88, 89, 106, 108, 110, 125, 128, 129, 157, 158, 178, 179, 95, 181, 182, 183dvfsumlem4 23596 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) ≤ 1 / 𝑦((log‘(𝑥 / 𝑦))↑𝑁))
185 fzfid 12634 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
18695, 4, 5syl2an 493 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
187186relogcld 24173 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
188 simpll 786 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ0)
189187, 188reexpcld 12887 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ)
190185, 189fsumrecl 14312 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ)
191190recnd 9947 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ)
19295rpcnd 11750 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ)
19373, 192mulcld 9939 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((!‘𝑁) · 𝑥) ∈ ℂ)
19411ad2antrl 760 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
195194recnd 9947 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
196195, 115expcld 12870 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥)↑𝑁) ∈ ℂ)
197 fzfid 12634 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (0...𝑁) ∈ Fin)
198194, 20, 21syl2an 493 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℝ)
19920adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
200199, 24syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
201198, 200nndivred 10946 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ)
202201recnd 9947 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
203197, 202fsumcl 14311 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
20473, 203mulcld 9939 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ)
205196, 204subcld 10271 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ)
206191, 193, 205sub32d 10303 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥)))
207 eqidd 2611 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))))
208 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
209208fveq2d 6107 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (⌊‘𝑦) = (⌊‘𝑥))
210209oveq2d 6565 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (1...(⌊‘𝑦)) = (1...(⌊‘𝑥)))
211210sumeq1d 14279 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁))
212 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (𝑥 / 𝑦) = (𝑥 / 𝑥))
21366ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
214 divid 10593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1)
215213, 214syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 / 𝑥) = 1)
216212, 215sylan9eqr 2666 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑥 / 𝑦) = 1)
217216adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 / 𝑦) = 1)
218217fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = (log‘1))
219218, 138syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = 0)
220219oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) = (0↑𝑘))
221220oveq1d 6564 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = ((0↑𝑘) / (!‘𝑘)))
222221sumeq2dv 14281 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((0↑𝑘) / (!‘𝑘)))
223 nn0uz 11598 . . . . . . . . . . . . . . . . . . . . . . . 24 0 = (ℤ‘0)
224115, 223syl6eleq 2698 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈ (ℤ‘0))
225 eluzfz1 12219 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
226224, 225syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ (0...𝑁))
227226adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → 0 ∈ (0...𝑁))
228227snssd 4281 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → {0} ⊆ (0...𝑁))
229 elsni 4142 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ {0} → 𝑘 = 0)
230229adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → 𝑘 = 0)
231 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 0 → (0↑𝑘) = (0↑0))
232 0exp0e1 12727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0↑0) = 1
233231, 232syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 0 → (0↑𝑘) = 1)
234 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 0 → (!‘𝑘) = (!‘0))
235 fac0 12925 . . . . . . . . . . . . . . . . . . . . . . . . 25 (!‘0) = 1
236234, 235syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 0 → (!‘𝑘) = 1)
237233, 236oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 0 → ((0↑𝑘) / (!‘𝑘)) = (1 / 1))
238 1div1e1 10596 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 1) = 1
239237, 238syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 0 → ((0↑𝑘) / (!‘𝑘)) = 1)
240230, 239syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → ((0↑𝑘) / (!‘𝑘)) = 1)
241 ax-1cn 9873 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
242240, 241syl6eqel 2696 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → ((0↑𝑘) / (!‘𝑘)) ∈ ℂ)
243 eldifi 3694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ((0...𝑁) ∖ {0}) → 𝑘 ∈ (0...𝑁))
244243adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ (0...𝑁))
245244, 20syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ ℕ0)
246 eldifsni 4261 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ((0...𝑁) ∖ {0}) → 𝑘 ≠ 0)
247246adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ≠ 0)
248 eldifsn 4260 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (ℕ0 ∖ {0}) ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
249245, 247, 248sylanbrc 695 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ (ℕ0 ∖ {0}))
250 dfn2 11182 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ = (ℕ0 ∖ {0})
251249, 250syl6eleqr 2699 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ ℕ)
2522510expd 12886 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (0↑𝑘) = 0)
253252oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → ((0↑𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
254245, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ∈ ℕ)
255254nncnd 10913 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ∈ ℂ)
256254nnne0d 10942 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ≠ 0)
257255, 256div0d 10679 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (0 / (!‘𝑘)) = 0)
258253, 257eqtrd 2644 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → ((0↑𝑘) / (!‘𝑘)) = 0)
259 fzfid 12634 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (0...𝑁) ∈ Fin)
260228, 242, 258, 259fsumss 14303 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((0↑𝑘) / (!‘𝑘)))
261222, 260eqtr4d 2647 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)))
262 0cn 9911 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
263239sumsn 14319 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = 1)
264262, 241, 263mp2an 704 . . . . . . . . . . . . . . . . . 18 Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = 1
265261, 264syl6eq 2660 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = 1)
266208, 265oveq12d 6567 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = (𝑥 · 1))
267192mulid1d 9936 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · 1) = 𝑥)
268267adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑥 · 1) = 𝑥)
269266, 268eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = 𝑥)
270269oveq2d 6565 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · 𝑥))
271211, 270oveq12d 6567 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)))
272 ovex 6577 . . . . . . . . . . . . . 14 𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) ∈ V
273272a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) ∈ V)
274207, 271, 95, 273fvmptd 6197 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)))
275 simpr 476 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → 𝑦 = 1)
276275fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (⌊‘𝑦) = (⌊‘1))
277 flid 12471 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℤ → (⌊‘1) = 1)
27882, 277ax-mp 5 . . . . . . . . . . . . . . . . . 18 (⌊‘1) = 1
279276, 278syl6eq 2660 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (⌊‘𝑦) = 1)
280279oveq2d 6565 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (1...(⌊‘𝑦)) = (1...1))
281280sumeq1d 14279 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁))
282192div1d 10672 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 / 1) = 𝑥)
283282adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 1) = 𝑥)
284283fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (log‘(𝑥 / 1)) = (log‘𝑥))
285284oveq1d 6564 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 1))↑𝑁) = ((log‘𝑥)↑𝑁))
286196adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘𝑥)↑𝑁) ∈ ℂ)
287285, 286eqeltrd 2688 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 1))↑𝑁) ∈ ℂ)
288 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑥 / 𝑛) = (𝑥 / 1))
289288fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (log‘(𝑥 / 𝑛)) = (log‘(𝑥 / 1)))
290289oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → ((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁))
291290fsum1 14320 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ ((log‘(𝑥 / 1))↑𝑁) ∈ ℂ) → Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁))
29282, 287, 291sylancr 694 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁))
293281, 292, 2853eqtrd 2648 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘𝑥)↑𝑁))
294275oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 𝑦) = (𝑥 / 1))
295294, 283eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 𝑦) = 𝑥)
296295fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (log‘(𝑥 / 𝑦)) = (log‘𝑥))
297296adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = (log‘𝑥))
298297oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) = ((log‘𝑥)↑𝑘))
299298oveq1d 6564 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = (((log‘𝑥)↑𝑘) / (!‘𝑘)))
300299sumeq2dv 14281 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))
301275, 300oveq12d 6567 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = (1 · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))
302203adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
303302mulid2d 9937 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (1 · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))
304301, 303eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))
305304oveq2d 6565 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))
306293, 305oveq12d 6567 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))))
307 ovex 6577 . . . . . . . . . . . . . 14 (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ V
308307a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ V)
309207, 306, 179, 308fvmptd 6197 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1) = (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))))
310274, 309oveq12d 6567 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))))
31171, 73, 192subdird 10366 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥) = ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) − ((!‘𝑁) · 𝑥)))
31265adantrr 749 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℂ)
313213simprd 478 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0)
314312, 192, 313divcan1d 10681 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))))
315314oveq1d 6564 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) − ((!‘𝑁) · 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥)))
316311, 315eqtrd 2644 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥)))
317206, 310, 3163eqtr4d 2654 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1)) = ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥))
318317fveq2d 6107 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) = (abs‘((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥)))
31974, 192absmuld 14041 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥)) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · (abs‘𝑥)))
320 rprege0 11723 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
321320ad2antrl 760 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
322 absid 13884 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
323321, 322syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥)
324323oveq2d 6565 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · (abs‘𝑥)) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥))
325318, 319, 3243eqtrd 2648 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥))
326 1cnd 9935 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
327296oveq1d 6564 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘𝑥)↑𝑁))
328326, 327csbied 3526 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 / 𝑦((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘𝑥)↑𝑁))
329184, 325, 3283brtr3d 4614 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥) ≤ ((log‘𝑥)↑𝑁))
33014adantrr 749 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥)↑𝑁) ∈ ℝ)
33175, 330, 95lemuldivd 11797 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥) ≤ ((log‘𝑥)↑𝑁) ↔ (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (((log‘𝑥)↑𝑁) / 𝑥)))
332329, 331mpbid 221 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (((log‘𝑥)↑𝑁) / 𝑥))
33376leabsd 14001 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ≤ (abs‘(((log‘𝑥)↑𝑁) / 𝑥)))
33475, 76, 78, 332, 333letrd 10073 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (abs‘(((log‘𝑥)↑𝑁) / 𝑥)))
33558adantrr 749 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ)
336335subid1d 10260 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥)↑𝑁) / 𝑥) − 0) = (((log‘𝑥)↑𝑁) / 𝑥))
337336fveq2d 6107 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥)↑𝑁) / 𝑥) − 0)) = (abs‘(((log‘𝑥)↑𝑁) / 𝑥)))
338334, 337breqtrrd 4611 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (abs‘((((log‘𝑥)↑𝑁) / 𝑥) − 0)))
33934, 35, 55, 58, 70, 338rlimsqzlem 14227 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥)) ⇝𝑟 (!‘𝑁))
340 divsubdir 10600 . . . . . 6 ((((log‘𝑥)↑𝑁) ∈ ℂ ∧ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) = ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)))
34160, 63, 67, 340syl3anc 1318 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) = ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)))
342341mpteq2dva 4672 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))))
343 rerpdivcl 11737 . . . . . . 7 ((((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) ∈ ℝ)
34428, 343sylancom 698 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) ∈ ℝ)
345 divass 10582 . . . . . . . . . 10 (((!‘𝑁) ∈ ℂ ∧ Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)))
34661, 62, 67, 345syl3anc 1318 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)))
34726recnd 9947 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ)
34818, 68, 347, 69fsumdivc 14360 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥))
34922recnd 9947 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℂ)
35025nnrpd 11746 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℝ+)
351350rpcnne0d 11757 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((!‘𝑘) ∈ ℂ ∧ (!‘𝑘) ≠ 0))
35267adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
353 divdiv32 10612 . . . . . . . . . . . . 13 ((((log‘𝑥)↑𝑘) ∈ ℂ ∧ ((!‘𝑘) ∈ ℂ ∧ (!‘𝑘) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))
354349, 351, 352, 353syl3anc 1318 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))
355354sumeq2dv 14281 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))
356348, 355eqtrd 2644 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))
357356oveq2d 6565 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))))
358346, 357eqtrd 2644 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))))
359358mpteq2dva 4672 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))))
3602adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℝ+)
36122, 360rerpdivcld 11779 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / 𝑥) ∈ ℝ)
362361, 25nndivred 10946 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ)
36318, 362fsumrecl 14312 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ)
364 rpssre 11719 . . . . . . . . . 10 + ⊆ ℝ
365 rlimconst 14123 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (!‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (!‘𝑁)) ⇝𝑟 (!‘𝑁))
366364, 35, 365sylancr 694 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (!‘𝑁)) ⇝𝑟 (!‘𝑁))
367364a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ℝ+ ⊆ ℝ)
368 fzfid 12634 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (0...𝑁) ∈ Fin)
369362anasss 677 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℝ+𝑘 ∈ (0...𝑁))) → ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ)
370361an32s 842 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑𝑘) / 𝑥) ∈ ℝ)
37120adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
372371, 24syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
373372nnred 10912 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℝ)
374373adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) → (!‘𝑘) ∈ ℝ)
375371, 54syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟 0)
376372nncnd 10913 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ)
377 rlimconst 14123 . . . . . . . . . . . . . 14 ((ℝ+ ⊆ ℝ ∧ (!‘𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (!‘𝑘)) ⇝𝑟 (!‘𝑘))
378364, 376, 377sylancr 694 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦ (!‘𝑘)) ⇝𝑟 (!‘𝑘))
379372nnne0d 10942 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0)
380379adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) → (!‘𝑘) ≠ 0)
381370, 374, 375, 378, 379, 380rlimdiv 14224 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 (0 / (!‘𝑘)))
382376, 379div0d 10679 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (0 / (!‘𝑘)) = 0)
383381, 382breqtrd 4609 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 0)
384367, 368, 369, 383fsumrlim 14384 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 Σ𝑘 ∈ (0...𝑁)0)
385 fzfi 12633 . . . . . . . . . . . 12 (0...𝑁) ∈ Fin
386385olci 405 . . . . . . . . . . 11 ((0...𝑁) ⊆ (ℤ‘0) ∨ (0...𝑁) ∈ Fin)
387 sumz 14300 . . . . . . . . . . 11 (((0...𝑁) ⊆ (ℤ‘0) ∨ (0...𝑁) ∈ Fin) → Σ𝑘 ∈ (0...𝑁)0 = 0)
388386, 387ax-mp 5 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑁)0 = 0
389384, 388syl6breq 4624 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 0)
39017, 363, 366, 389rlimmul 14223 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) ⇝𝑟 ((!‘𝑁) · 0))
39135mul01d 10114 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((!‘𝑁) · 0) = 0)
392390, 391breqtrd 4609 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) ⇝𝑟 0)
393359, 392eqbrtrd 4605 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)) ⇝𝑟 0)
39457, 344, 55, 393rlimsub 14222 . . . . 5 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) ⇝𝑟 (0 − 0))
395 0m0e0 11007 . . . . 5 (0 − 0) = 0
396394, 395syl6breq 4624 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) ⇝𝑟 0)
397342, 396eqbrtrd 4605 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) ⇝𝑟 0)
39831, 33, 339, 397rlimadd 14221 . 2 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) ⇝𝑟 ((!‘𝑁) + 0))
399 divsubdir 10600 . . . . . 6 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ ∧ (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)))
40059, 64, 67, 399syl3anc 1318 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)))
401400oveq1d 6564 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)))
40210, 2rerpdivcld 11779 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) ∈ ℝ)
403402recnd 9947 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) ∈ ℂ)
40433recnd 9947 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℂ)
405403, 404npcand 10275 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥))
406401, 405eqtrd 2644 . . 3 ((𝑁 ∈ ℕ0𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥))
407406mpteq2dva 4672 . 2 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)))
40835addid1d 10115 . 2 (𝑁 ∈ ℕ0 → ((!‘𝑁) + 0) = (!‘𝑁))
409398, 407, 4083brtr3d 4614 1 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) ⇝𝑟 (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  csb 3499  cdif 3537  wss 3540  {csn 4125  {cpr 4127   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  cle 9954  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  +crp 11708  (,)cioo 12046  ...cfz 12197  cfl 12453  cexp 12722  !cfa 12922  abscabs 13822  𝑟 crli 14064  Σcsu 14264   D cdv 23433  logclog 24105  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  logfacrlim2  24751  selberglem2  25035
  Copyright terms: Public domain W3C validator