MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacrlim Structured version   Visualization version   GIF version

Theorem logfacrlim 24749
Description: Combine the estimates logfacubnd 24746 and logfaclbnd 24747, to get log(𝑥!) = 𝑥log𝑥 + 𝑂(𝑥). Equation 9.2.9 of [Shapiro], p. 329. This is a weak form of the even stronger statement, log(𝑥!) = 𝑥log𝑥𝑥 + 𝑂(log𝑥). (Contributed by Mario Carneiro, 16-Apr-2016.) (Revised by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
logfacrlim (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1

Proof of Theorem logfacrlim
StepHypRef Expression
1 1red 9934 . . 3 (⊤ → 1 ∈ ℝ)
2 1cnd 9935 . . 3 (⊤ → 1 ∈ ℂ)
3 relogcl 24126 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
43adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
54recnd 9947 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
6 1cnd 9935 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 rpcnne0 11726 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
87adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
9 divdir 10589 . . . . . . 7 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
105, 6, 8, 9syl3anc 1318 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
1110mpteq2dva 4672 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))))
12 simpr 476 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
134, 12rerpdivcld 11779 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / 𝑥) ∈ ℝ)
14 rpreccl 11733 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
1514adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
1615rpred 11748 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
178simpld 474 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
1817cxp1d 24252 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
1918oveq2d 6565 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / (𝑥𝑐1)) = ((log‘𝑥) / 𝑥))
2019mpteq2dva 4672 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)))
21 1rp 11712 . . . . . . . 8 1 ∈ ℝ+
22 cxploglim 24504 . . . . . . . 8 (1 ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2321, 22mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2420, 23eqbrtrrd 4607 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) ⇝𝑟 0)
25 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
26 divrcnv 14423 . . . . . . 7 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2725, 26mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2813, 16, 24, 27rlimadd 14221 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))) ⇝𝑟 (0 + 0))
2911, 28eqbrtrd 4605 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 (0 + 0))
30 00id 10090 . . . 4 (0 + 0) = 0
3129, 30syl6breq 4624 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 0)
32 peano2re 10088 . . . . . 6 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) + 1) ∈ ℝ)
334, 32syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) + 1) ∈ ℝ)
3433, 12rerpdivcld 11779 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ)
3534recnd 9947 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
36 rprege0 11723 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
3736adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
38 flge0nn0 12483 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
39 faccl 12932 . . . . . . . . 9 ((⌊‘𝑥) ∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ)
4037, 38, 393syl 18 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℕ)
4140nnrpd 11746 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℝ+)
42 relogcl 24126 . . . . . . 7 ((!‘(⌊‘𝑥)) ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4341, 42syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4443, 12rerpdivcld 11779 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
4544recnd 9947 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
465, 45subcld 10271 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
47 logfacbnd3 24748 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4847adantl 481 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4943recnd 9947 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
5049adantrr 749 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
517ad2antrl 760 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5251simpld 474 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ)
535adantrr 749 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
54 subcl 10159 . . . . . . . . . 10 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → ((log‘𝑥) − 1) ∈ ℂ)
5553, 25, 54sylancl 693 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) − 1) ∈ ℂ)
5652, 55mulcld 9939 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · ((log‘𝑥) − 1)) ∈ ℂ)
5750, 56subcld 10271 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1))) ∈ ℂ)
5857abscld 14023 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ)
594adantrr 749 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
6059, 32syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ)
61 rpregt0 11722 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6261ad2antrl 760 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
63 lediv1 10767 . . . . . 6 (((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ ∧ ((log‘𝑥) + 1) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6458, 60, 62, 63syl3anc 1318 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6548, 64mpbid 221 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥))
6651simprd 478 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0)
6755, 52, 66divcan3d 10685 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) / 𝑥) = ((log‘𝑥) − 1))
6867oveq1d 6564 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
69 divsubdir 10600 . . . . . . . 8 (((𝑥 · ((log‘𝑥) − 1)) ∈ ℂ ∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7056, 50, 51, 69syl3anc 1318 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7145adantrr 749 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
72 1cnd 9935 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
7353, 71, 72sub32d 10303 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7468, 70, 733eqtr4rd 2655 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
7574fveq2d 6107 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)))
7656, 50subcld 10271 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) ∈ ℂ)
7776, 52, 66absdivd 14042 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)) = ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)))
7856, 50abssubd 14040 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) = (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))))
7936ad2antrl 760 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
80 absid 13884 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
8179, 80syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥)
8278, 81oveq12d 6567 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8375, 77, 823eqtrd 2648 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8435adantrr 749 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
8584subid1d 10260 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥) + 1) / 𝑥) − 0) = (((log‘𝑥) + 1) / 𝑥))
8685fveq2d 6107 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (abs‘(((log‘𝑥) + 1) / 𝑥)))
87 log1 24136 . . . . . . . . 9 (log‘1) = 0
88 simprr 792 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
8912adantrr 749 . . . . . . . . . . 11 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
90 logleb 24153 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9121, 89, 90sylancr 694 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9288, 91mpbid 221 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
9387, 92syl5eqbrr 4619 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
9459, 93ge0p1rpd 11778 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ+)
9594, 89rpdivcld 11765 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ+)
96 rprege0 11723 . . . . . 6 ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ+ → ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)))
97 absid 13884 . . . . . 6 (((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9895, 96, 973syl 18 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9986, 98eqtrd 2644 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (((log‘𝑥) + 1) / 𝑥))
10065, 83, 993brtr4d 4615 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) ≤ (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)))
1011, 2, 31, 35, 46, 100rlimsqzlem 14227 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1)
102101trud 1484 1 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wtru 1476  wcel 1977  wne 2780   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  +crp 11708  cfl 12453  !cfa 12922  abscabs 13822  𝑟 crli 14064  logclog 24105  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  vmadivsum  24971
  Copyright terms: Public domain W3C validator